Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220692145> ?p ?o ?g. }
- W4220692145 endingPage "3353" @default.
- W4220692145 startingPage "3342" @default.
- W4220692145 abstract "With the rapid development of machine learning in the medical cloud system, cloud-assisted medical computing provides a concrete platform for remote rapid medical diagnosis services. Support vector machine (SVM), as one of the important algorithms of machine learning, has been widely used in the field of medical diagnosis for its high classification accuracy and efficiency. In some existing schemes, healthcare providers train diagnostic models with SVM algorithms and provide online diagnostic services to doctors. Doctors send the patient's case report to the diagnostic models to obtain the results and assist in clinical diagnosis. However, case report involves patients' privacy, and patients do not want their sensitive information to be leaked. Therefore, the protection of patient's privacy has become an important research direction in the field of online medical diagnosis. In this paper, we propose a privacy-preserving medical diagnosis scheme based on multi-class SVMs. The scheme is based on the distributed two trapdoors public key cryptosystem (DT-PKC) and Boneh-Goh-Nissim (BGN) cryptosystem. We design a secure computing protocol to compute the core process of the SVM classification algorithm. Our scheme can deal with both linearly separable data and nonlinear data while protecting the privacy of user data and support vectors. The results show that our scheme is secure, reliable, scalable with high accuracy." @default.
- W4220692145 created "2022-04-03" @default.
- W4220692145 creator A5003993290 @default.
- W4220692145 creator A5007920509 @default.
- W4220692145 creator A5041002119 @default.
- W4220692145 creator A5053622471 @default.
- W4220692145 creator A5066488485 @default.
- W4220692145 creator A5082188033 @default.
- W4220692145 date "2022-07-01" @default.
- W4220692145 modified "2023-10-15" @default.
- W4220692145 title "Privacy-Preserving Multi-Class Support Vector Machine Model on Medical Diagnosis" @default.
- W4220692145 cites W1204565951 @default.
- W4220692145 cites W1499934958 @default.
- W4220692145 cites W1529862094 @default.
- W4220692145 cites W1571926107 @default.
- W4220692145 cites W1605862214 @default.
- W4220692145 cites W1798609567 @default.
- W4220692145 cites W1976649959 @default.
- W4220692145 cites W2048479862 @default.
- W4220692145 cites W2053432263 @default.
- W4220692145 cites W2108834246 @default.
- W4220692145 cites W2118414527 @default.
- W4220692145 cites W2132172731 @default.
- W4220692145 cites W2136926597 @default.
- W4220692145 cites W2142069366 @default.
- W4220692145 cites W2147667726 @default.
- W4220692145 cites W2332738317 @default.
- W4220692145 cites W2396622649 @default.
- W4220692145 cites W2405356014 @default.
- W4220692145 cites W2478675481 @default.
- W4220692145 cites W2595643875 @default.
- W4220692145 cites W2763867113 @default.
- W4220692145 cites W2767118735 @default.
- W4220692145 cites W2792587241 @default.
- W4220692145 cites W2905490635 @default.
- W4220692145 cites W2916763046 @default.
- W4220692145 cites W2922379180 @default.
- W4220692145 cites W2962697760 @default.
- W4220692145 cites W3004208557 @default.
- W4220692145 cites W3012382439 @default.
- W4220692145 cites W3037930875 @default.
- W4220692145 cites W3040028709 @default.
- W4220692145 cites W3082549826 @default.
- W4220692145 cites W3093577951 @default.
- W4220692145 cites W3097675531 @default.
- W4220692145 cites W3097891658 @default.
- W4220692145 cites W3117672266 @default.
- W4220692145 cites W3163562723 @default.
- W4220692145 cites W3169509062 @default.
- W4220692145 cites W3170031697 @default.
- W4220692145 cites W3181801984 @default.
- W4220692145 cites W3206306675 @default.
- W4220692145 cites W4232836212 @default.
- W4220692145 doi "https://doi.org/10.1109/jbhi.2022.3157592" @default.
- W4220692145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35259122" @default.
- W4220692145 hasPublicationYear "2022" @default.
- W4220692145 type Work @default.
- W4220692145 citedByCount "9" @default.
- W4220692145 countsByYear W42206921452022 @default.
- W4220692145 countsByYear W42206921452023 @default.
- W4220692145 crossrefType "journal-article" @default.
- W4220692145 hasAuthorship W4220692145A5003993290 @default.
- W4220692145 hasAuthorship W4220692145A5007920509 @default.
- W4220692145 hasAuthorship W4220692145A5041002119 @default.
- W4220692145 hasAuthorship W4220692145A5053622471 @default.
- W4220692145 hasAuthorship W4220692145A5066488485 @default.
- W4220692145 hasAuthorship W4220692145A5082188033 @default.
- W4220692145 hasConcept C111919701 @default.
- W4220692145 hasConcept C11413529 @default.
- W4220692145 hasConcept C119857082 @default.
- W4220692145 hasConcept C12267149 @default.
- W4220692145 hasConcept C124101348 @default.
- W4220692145 hasConcept C134306372 @default.
- W4220692145 hasConcept C148730421 @default.
- W4220692145 hasConcept C154945302 @default.
- W4220692145 hasConcept C202444582 @default.
- W4220692145 hasConcept C33923547 @default.
- W4220692145 hasConcept C38652104 @default.
- W4220692145 hasConcept C41008148 @default.
- W4220692145 hasConcept C48044578 @default.
- W4220692145 hasConcept C6295992 @default.
- W4220692145 hasConcept C66989864 @default.
- W4220692145 hasConcept C73468433 @default.
- W4220692145 hasConcept C75684735 @default.
- W4220692145 hasConcept C77088390 @default.
- W4220692145 hasConcept C77618280 @default.
- W4220692145 hasConcept C79974875 @default.
- W4220692145 hasConcept C9652623 @default.
- W4220692145 hasConceptScore W4220692145C111919701 @default.
- W4220692145 hasConceptScore W4220692145C11413529 @default.
- W4220692145 hasConceptScore W4220692145C119857082 @default.
- W4220692145 hasConceptScore W4220692145C12267149 @default.
- W4220692145 hasConceptScore W4220692145C124101348 @default.
- W4220692145 hasConceptScore W4220692145C134306372 @default.
- W4220692145 hasConceptScore W4220692145C148730421 @default.
- W4220692145 hasConceptScore W4220692145C154945302 @default.
- W4220692145 hasConceptScore W4220692145C202444582 @default.
- W4220692145 hasConceptScore W4220692145C33923547 @default.