Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220693559> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4220693559 endingPage "4827" @default.
- W4220693559 startingPage "4815" @default.
- W4220693559 abstract "Twin support vector machines (TSVMs) have been successfully employed for binary classification problems. With the advent of machine learning algorithms, data have proliferated and there is a need to handle or process large-scale data. TSVMs are not successful in handling large-scale data due to the following: 1) the optimization problem solved in the TSVM needs to calculate large matrix inverses, which makes it an ineffective choice for large-scale problems; 2) the empirical risk minimization principle is employed in the TSVM and, hence, may suffer due to overfitting; and 3) the Wolfe dual of TSVM formulation involves positive-semidefinite matrices, and hence, singularity issues need to be resolved manually. Keeping in view the aforementioned shortcomings, in this article, we propose a novel large-scale fuzzy least squares TSVM for class imbalance learning (LS-FLSTSVM-CIL). We formulate the LS-FLSTSVM-CIL such that the proposed optimization problem ensures that: 1) no matrix inversion is involved in the proposed LS-FLSTSVM-CIL formulation, which makes it an efficient choice for large-scale problems; 2) the structural risk minimization principle is implemented, which avoids the issues of overfitting and results in better performance; and 3) the Wolfe dual formulation of the proposed LS-FLSTSVM-CIL model involves positive-definite matrices. In addition, to resolve the issues of class imbalance, we assign fuzzy weights in the proposed LS-FLSTSVM-CIL to avoid bias in dominating the samples of class imbalance problems. To make it more feasible for large-scale problems, we use an iterative procedure known as the sequential minimization principle to solve the objective function of the proposed LS-FLSTSVM-CIL model. From the experimental results, one can see that the proposed LS-FLSTSVM-CIL demonstrates superior performance in comparison to baseline classifiers. To demonstrate the feasibility of the proposed LS-FLSTSVM-CIL on large-scale classification problems, we evaluate the classification models on the large-scale normally distributed clustered (NDC) dataset. To demonstrate the practical applications of the proposed LS-FLSTSVM-CIL model, we evaluate it for the diagnosis of Alzheimer’s disease and breast cancer disease. Evaluation on NDC datasets shows that the proposed LS-FLSTSVM-CIL has feasibility in large-scale problems as it is fast in comparison to the baseline classifiers." @default.
- W4220693559 created "2022-04-03" @default.
- W4220693559 creator A5033429345 @default.
- W4220693559 creator A5058936239 @default.
- W4220693559 creator A5087900889 @default.
- W4220693559 date "2022-11-01" @default.
- W4220693559 modified "2023-10-09" @default.
- W4220693559 title "Large-Scale Fuzzy Least Squares Twin SVMs for Class Imbalance Learning" @default.
- W4220693559 doi "https://doi.org/10.1109/tfuzz.2022.3161729" @default.
- W4220693559 hasPublicationYear "2022" @default.
- W4220693559 type Work @default.
- W4220693559 citedByCount "12" @default.
- W4220693559 countsByYear W42206935592022 @default.
- W4220693559 countsByYear W42206935592023 @default.
- W4220693559 crossrefType "journal-article" @default.
- W4220693559 hasAuthorship W4220693559A5033429345 @default.
- W4220693559 hasAuthorship W4220693559A5058936239 @default.
- W4220693559 hasAuthorship W4220693559A5087900889 @default.
- W4220693559 hasConcept C11413529 @default.
- W4220693559 hasConcept C119857082 @default.
- W4220693559 hasConcept C12267149 @default.
- W4220693559 hasConcept C126255220 @default.
- W4220693559 hasConcept C137836250 @default.
- W4220693559 hasConcept C147764199 @default.
- W4220693559 hasConcept C154507838 @default.
- W4220693559 hasConcept C154945302 @default.
- W4220693559 hasConcept C22019652 @default.
- W4220693559 hasConcept C33923547 @default.
- W4220693559 hasConcept C41008148 @default.
- W4220693559 hasConcept C50644808 @default.
- W4220693559 hasConceptScore W4220693559C11413529 @default.
- W4220693559 hasConceptScore W4220693559C119857082 @default.
- W4220693559 hasConceptScore W4220693559C12267149 @default.
- W4220693559 hasConceptScore W4220693559C126255220 @default.
- W4220693559 hasConceptScore W4220693559C137836250 @default.
- W4220693559 hasConceptScore W4220693559C147764199 @default.
- W4220693559 hasConceptScore W4220693559C154507838 @default.
- W4220693559 hasConceptScore W4220693559C154945302 @default.
- W4220693559 hasConceptScore W4220693559C22019652 @default.
- W4220693559 hasConceptScore W4220693559C33923547 @default.
- W4220693559 hasConceptScore W4220693559C41008148 @default.
- W4220693559 hasConceptScore W4220693559C50644808 @default.
- W4220693559 hasFunder F4320306078 @default.
- W4220693559 hasFunder F4320306219 @default.
- W4220693559 hasFunder F4320307115 @default.
- W4220693559 hasFunder F4320307132 @default.
- W4220693559 hasFunder F4320307758 @default.
- W4220693559 hasFunder F4320307765 @default.
- W4220693559 hasFunder F4320308604 @default.
- W4220693559 hasFunder F4320309117 @default.
- W4220693559 hasFunder F4320309432 @default.
- W4220693559 hasFunder F4320309470 @default.
- W4220693559 hasFunder F4320309697 @default.
- W4220693559 hasFunder F4320310045 @default.
- W4220693559 hasFunder F4320310388 @default.
- W4220693559 hasFunder F4320310465 @default.
- W4220693559 hasFunder F4320322148 @default.
- W4220693559 hasFunder F4320325255 @default.
- W4220693559 hasFunder F4320326272 @default.
- W4220693559 hasFunder F4320327235 @default.
- W4220693559 hasFunder F4320327918 @default.
- W4220693559 hasFunder F4320329118 @default.
- W4220693559 hasFunder F4320332161 @default.
- W4220693559 hasFunder F4320332193 @default.
- W4220693559 hasFunder F4320332457 @default.
- W4220693559 hasFunder F4320334771 @default.
- W4220693559 hasFunder F4320337337 @default.
- W4220693559 hasFunder F4320337363 @default.
- W4220693559 hasFunder F4320337804 @default.
- W4220693559 hasFunder F4320337830 @default.
- W4220693559 hasIssue "11" @default.
- W4220693559 hasLocation W42206935591 @default.
- W4220693559 hasOpenAccess W4220693559 @default.
- W4220693559 hasPrimaryLocation W42206935591 @default.
- W4220693559 hasRelatedWork W1996541855 @default.
- W4220693559 hasRelatedWork W2355747712 @default.
- W4220693559 hasRelatedWork W2365190116 @default.
- W4220693559 hasRelatedWork W2374560386 @default.
- W4220693559 hasRelatedWork W2375493088 @default.
- W4220693559 hasRelatedWork W2387178200 @default.
- W4220693559 hasRelatedWork W2989932438 @default.
- W4220693559 hasRelatedWork W3099765033 @default.
- W4220693559 hasRelatedWork W4210794429 @default.
- W4220693559 hasRelatedWork W2785620801 @default.
- W4220693559 hasVolume "30" @default.
- W4220693559 isParatext "false" @default.
- W4220693559 isRetracted "false" @default.
- W4220693559 workType "article" @default.