Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220693654> ?p ?o ?g. }
- W4220693654 endingPage "24" @default.
- W4220693654 startingPage "1" @default.
- W4220693654 abstract "Abstract Stochastic Volatility (SV) models are an alternative to GARCH models for estimating volatility and several empirical studies have indicated that volatility exhibits long-memory behavior. The main objective of this work is to propose a new method to estimate a univariate long-memory stochastic volatility (LMSV) model. For this purpose we formulate the LMSV model in a state-space representation with non-Gaussian perturbations in the observation equation, and the estimation of parameters is performed by maximizing the likelihood written in terms derived from a Kalman filter algorithm. We also present a procedure to calculate volatility and Value-at-Risks forecasts. The proposal is evaluated by means of Monte Carlo experiments and applied to real-life time series, where an illustration of market risk calculation is presented." @default.
- W4220693654 created "2022-04-03" @default.
- W4220693654 creator A5034770100 @default.
- W4220693654 creator A5066465319 @default.
- W4220693654 date "2022-03-25" @default.
- W4220693654 modified "2023-10-02" @default.
- W4220693654 title "Estimation and forecasting of long memory stochastic volatility models" @default.
- W4220693654 cites W120940941 @default.
- W4220693654 cites W1508427692 @default.
- W4220693654 cites W1566395535 @default.
- W4220693654 cites W1639275303 @default.
- W4220693654 cites W1645341287 @default.
- W4220693654 cites W1875153640 @default.
- W4220693654 cites W1977970167 @default.
- W4220693654 cites W1983818306 @default.
- W4220693654 cites W2011586511 @default.
- W4220693654 cites W2034161641 @default.
- W4220693654 cites W2041422849 @default.
- W4220693654 cites W2051041131 @default.
- W4220693654 cites W2055781590 @default.
- W4220693654 cites W2075576847 @default.
- W4220693654 cites W2078262781 @default.
- W4220693654 cites W2079672223 @default.
- W4220693654 cites W2080191580 @default.
- W4220693654 cites W2081475269 @default.
- W4220693654 cites W2101913545 @default.
- W4220693654 cites W2112601273 @default.
- W4220693654 cites W2127297724 @default.
- W4220693654 cites W2129255115 @default.
- W4220693654 cites W2130849921 @default.
- W4220693654 cites W2132236499 @default.
- W4220693654 cites W2166689289 @default.
- W4220693654 cites W2171074980 @default.
- W4220693654 cites W2497534953 @default.
- W4220693654 cites W2766080526 @default.
- W4220693654 cites W2999528224 @default.
- W4220693654 cites W3121696447 @default.
- W4220693654 cites W3121918541 @default.
- W4220693654 cites W3122046970 @default.
- W4220693654 cites W3123053509 @default.
- W4220693654 cites W3123979795 @default.
- W4220693654 cites W3124179420 @default.
- W4220693654 cites W3125710411 @default.
- W4220693654 cites W3125744118 @default.
- W4220693654 cites W3125863044 @default.
- W4220693654 cites W36258007 @default.
- W4220693654 cites W4242671632 @default.
- W4220693654 cites W2081414860 @default.
- W4220693654 doi "https://doi.org/10.1515/snde-2020-0106" @default.
- W4220693654 hasPublicationYear "2022" @default.
- W4220693654 type Work @default.
- W4220693654 citedByCount "1" @default.
- W4220693654 countsByYear W42206936542022 @default.
- W4220693654 crossrefType "journal-article" @default.
- W4220693654 hasAuthorship W4220693654A5034770100 @default.
- W4220693654 hasAuthorship W4220693654A5066465319 @default.
- W4220693654 hasConcept C105795698 @default.
- W4220693654 hasConcept C11413529 @default.
- W4220693654 hasConcept C117996083 @default.
- W4220693654 hasConcept C121332964 @default.
- W4220693654 hasConcept C149782125 @default.
- W4220693654 hasConcept C157286648 @default.
- W4220693654 hasConcept C161584116 @default.
- W4220693654 hasConcept C163716315 @default.
- W4220693654 hasConcept C187625094 @default.
- W4220693654 hasConcept C199163554 @default.
- W4220693654 hasConcept C23922673 @default.
- W4220693654 hasConcept C33923547 @default.
- W4220693654 hasConcept C41008148 @default.
- W4220693654 hasConcept C52918065 @default.
- W4220693654 hasConcept C62520636 @default.
- W4220693654 hasConcept C64133820 @default.
- W4220693654 hasConcept C85393063 @default.
- W4220693654 hasConcept C89218465 @default.
- W4220693654 hasConcept C91602232 @default.
- W4220693654 hasConcept C93045229 @default.
- W4220693654 hasConceptScore W4220693654C105795698 @default.
- W4220693654 hasConceptScore W4220693654C11413529 @default.
- W4220693654 hasConceptScore W4220693654C117996083 @default.
- W4220693654 hasConceptScore W4220693654C121332964 @default.
- W4220693654 hasConceptScore W4220693654C149782125 @default.
- W4220693654 hasConceptScore W4220693654C157286648 @default.
- W4220693654 hasConceptScore W4220693654C161584116 @default.
- W4220693654 hasConceptScore W4220693654C163716315 @default.
- W4220693654 hasConceptScore W4220693654C187625094 @default.
- W4220693654 hasConceptScore W4220693654C199163554 @default.
- W4220693654 hasConceptScore W4220693654C23922673 @default.
- W4220693654 hasConceptScore W4220693654C33923547 @default.
- W4220693654 hasConceptScore W4220693654C41008148 @default.
- W4220693654 hasConceptScore W4220693654C52918065 @default.
- W4220693654 hasConceptScore W4220693654C62520636 @default.
- W4220693654 hasConceptScore W4220693654C64133820 @default.
- W4220693654 hasConceptScore W4220693654C85393063 @default.
- W4220693654 hasConceptScore W4220693654C89218465 @default.
- W4220693654 hasConceptScore W4220693654C91602232 @default.
- W4220693654 hasConceptScore W4220693654C93045229 @default.
- W4220693654 hasIssue "1" @default.
- W4220693654 hasLocation W42206936541 @default.