Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220694920> ?p ?o ?g. }
- W4220694920 abstract "Membrane proteins are an essential part of the body's ability to maintain normal life activities. Further research into membrane proteins, which are present in all aspects of life science research, will help to advance the development of cells and drugs. The current methods for predicting proteins are usually based on machine learning, but further improvements in prediction effectiveness and accuracy are needed. In this paper, we propose a dynamic deep network architecture based on lifelong learning in order to use computers to classify membrane proteins more effectively. The model extends the application area of lifelong learning and provides new ideas for multiple classification problems in bioinformatics. To demonstrate the performance of our model, we conducted experiments on top of two datasets and compared them with other classification methods. The results show that our model achieves high accuracy (95.3 and 93.5%) on benchmark datasets and is more effective compared to other methods." @default.
- W4220694920 created "2022-04-03" @default.
- W4220694920 creator A5024991309 @default.
- W4220694920 creator A5027282565 @default.
- W4220694920 creator A5071773009 @default.
- W4220694920 creator A5076013894 @default.
- W4220694920 creator A5076525932 @default.
- W4220694920 creator A5086714131 @default.
- W4220694920 creator A5087429872 @default.
- W4220694920 date "2022-03-14" @default.
- W4220694920 modified "2023-10-14" @default.
- W4220694920 title "Identifying Membrane Protein Types Based on Lifelong Learning With Dynamically Scalable Networks" @default.
- W4220694920 cites W1496604422 @default.
- W4220694920 cites W1980897319 @default.
- W4220694920 cites W1982289655 @default.
- W4220694920 cites W1991564165 @default.
- W4220694920 cites W2018235493 @default.
- W4220694920 cites W2020194549 @default.
- W4220694920 cites W2026710881 @default.
- W4220694920 cites W2031614119 @default.
- W4220694920 cites W2036956828 @default.
- W4220694920 cites W2047187013 @default.
- W4220694920 cites W2060635016 @default.
- W4220694920 cites W2114010544 @default.
- W4220694920 cites W2145957695 @default.
- W4220694920 cites W2147580225 @default.
- W4220694920 cites W2148853951 @default.
- W4220694920 cites W2156125289 @default.
- W4220694920 cites W2158714788 @default.
- W4220694920 cites W2161621183 @default.
- W4220694920 cites W2470414691 @default.
- W4220694920 cites W2611495100 @default.
- W4220694920 cites W2748458402 @default.
- W4220694920 cites W2757522837 @default.
- W4220694920 cites W2767813457 @default.
- W4220694920 cites W2770006469 @default.
- W4220694920 cites W2784470720 @default.
- W4220694920 cites W2790001298 @default.
- W4220694920 cites W2900490197 @default.
- W4220694920 cites W2936436450 @default.
- W4220694920 cites W2997041379 @default.
- W4220694920 cites W2997213536 @default.
- W4220694920 cites W2998238598 @default.
- W4220694920 cites W3033413022 @default.
- W4220694920 cites W3046037612 @default.
- W4220694920 cites W3176821806 @default.
- W4220694920 cites W3183728742 @default.
- W4220694920 cites W3192918171 @default.
- W4220694920 cites W3198840069 @default.
- W4220694920 cites W3199041041 @default.
- W4220694920 cites W3214582979 @default.
- W4220694920 cites W4236354716 @default.
- W4220694920 doi "https://doi.org/10.3389/fgene.2021.834488" @default.
- W4220694920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35371189" @default.
- W4220694920 hasPublicationYear "2022" @default.
- W4220694920 type Work @default.
- W4220694920 citedByCount "2" @default.
- W4220694920 countsByYear W42206949202023 @default.
- W4220694920 crossrefType "journal-article" @default.
- W4220694920 hasAuthorship W4220694920A5024991309 @default.
- W4220694920 hasAuthorship W4220694920A5027282565 @default.
- W4220694920 hasAuthorship W4220694920A5071773009 @default.
- W4220694920 hasAuthorship W4220694920A5076013894 @default.
- W4220694920 hasAuthorship W4220694920A5076525932 @default.
- W4220694920 hasAuthorship W4220694920A5086714131 @default.
- W4220694920 hasAuthorship W4220694920A5087429872 @default.
- W4220694920 hasBestOaLocation W42206949201 @default.
- W4220694920 hasConcept C108583219 @default.
- W4220694920 hasConcept C108771440 @default.
- W4220694920 hasConcept C119857082 @default.
- W4220694920 hasConcept C13280743 @default.
- W4220694920 hasConcept C154945302 @default.
- W4220694920 hasConcept C15744967 @default.
- W4220694920 hasConcept C185798385 @default.
- W4220694920 hasConcept C19417346 @default.
- W4220694920 hasConcept C205649164 @default.
- W4220694920 hasConcept C41008148 @default.
- W4220694920 hasConcept C48044578 @default.
- W4220694920 hasConcept C77088390 @default.
- W4220694920 hasConceptScore W4220694920C108583219 @default.
- W4220694920 hasConceptScore W4220694920C108771440 @default.
- W4220694920 hasConceptScore W4220694920C119857082 @default.
- W4220694920 hasConceptScore W4220694920C13280743 @default.
- W4220694920 hasConceptScore W4220694920C154945302 @default.
- W4220694920 hasConceptScore W4220694920C15744967 @default.
- W4220694920 hasConceptScore W4220694920C185798385 @default.
- W4220694920 hasConceptScore W4220694920C19417346 @default.
- W4220694920 hasConceptScore W4220694920C205649164 @default.
- W4220694920 hasConceptScore W4220694920C41008148 @default.
- W4220694920 hasConceptScore W4220694920C48044578 @default.
- W4220694920 hasConceptScore W4220694920C77088390 @default.
- W4220694920 hasLocation W42206949201 @default.
- W4220694920 hasLocation W42206949202 @default.
- W4220694920 hasLocation W42206949203 @default.
- W4220694920 hasLocation W42206949204 @default.
- W4220694920 hasOpenAccess W4220694920 @default.
- W4220694920 hasPrimaryLocation W42206949201 @default.
- W4220694920 hasRelatedWork W112744582 @default.
- W4220694920 hasRelatedWork W3014300295 @default.
- W4220694920 hasRelatedWork W3164822677 @default.