Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220698906> ?p ?o ?g. }
- W4220698906 endingPage "1249" @default.
- W4220698906 startingPage "1225" @default.
- W4220698906 abstract "Abstract Hydrothermal fluids dissolve and precipitate vast quantities of carbonate during the formation of Carlin-type gold deposits. This mass transfer results in extensive volumes of decarbonatized rock and hydrothermal calcite with distinct δ18O and δ13C signatures, occurring as both veins and wall-rock pseudomorphs. However, the processes which cause the fluids to switch between carbonate-dissolving and carbonate-precipitating are not well understood. Here, we present a model for the formation of ore-stage calcite through the pseudomorphic replacement of pre-existing calcite based on a detailed study of UV-fluorescent (UVF) calcite veins from the Nadaleen trend Carlin-type gold deposits in Yukon. The UV fluorescence in the veins is a visual indicator of their high-Mn, low-Fe chemistry, which we use to develop our model. The proximity of UVF calcite veins to ore-stage alteration and the realgar within the veins indicate that they formed during Au mineralization. Vein orientation and crosscutting relationships with faults and dikes suggest they formed by replacing pre-existing calcite veins that developed during folding. Cathodoluminescence responses, showing the selective replacement of pre-ore calcite by Mn-rich calcite, support this hypothesis. We propose that differences in Mn, Sr, and Mg content between pre-existing calcite and UVF calcite drive this replacement reaction as the fluids approach calcite saturation. UVF calcite veins have fluid-dominated δ13C and δ18O compositions, suggesting that the fluids dissolved fluid-buffered hydrothermal carbonate upstream along the flow path. In our model, unreactive and high-permeability decarbonatized rock allows upstream fluids to reach reactive calcite at the edge of the dissolution zone, where they replace the calcite with ore-stage calcite pseudomorphs. Over several iterations of this process, the fluids repeatedly precipitate and dissolve ore-stage calcite, moving it downstream as a roll front, which concentrates Mn at the edge of the dissolution zone. We suggest that this mass transfer also occurs at the deposit scale to form zoned carbonate alteration along the flow path. Additionally, we present carbonate clumped isotope thermometry results that indicate UVF calcite veins formed at temperatures of ~140°C, although higher temperatures of up to 300°C are possible if the veins exhumed slowly after their formation. Calculated fluid δ13C and δ18O values at these temperatures suggest a meteoric fluid source, although the isotopic data are not inconsistent with a magmatic source if fluid temperatures were ≥200°C because less isotopic fractionation occurs at higher temperatures." @default.
- W4220698906 created "2022-04-03" @default.
- W4220698906 creator A5039399115 @default.
- W4220698906 creator A5050982684 @default.
- W4220698906 creator A5055734432 @default.
- W4220698906 creator A5087841627 @default.
- W4220698906 date "2022-08-01" @default.
- W4220698906 modified "2023-09-23" @default.
- W4220698906 title "“Roll-Front” Mass Transfer of Carbonate Cations in Carlin-Type Gold Deposits: Insights from UV-Fluorescent Calcite Veins" @default.
- W4220698906 cites W1764471988 @default.
- W4220698906 cites W1965396523 @default.
- W4220698906 cites W1970658925 @default.
- W4220698906 cites W1971783719 @default.
- W4220698906 cites W1974575744 @default.
- W4220698906 cites W1981926445 @default.
- W4220698906 cites W1982491306 @default.
- W4220698906 cites W1987758030 @default.
- W4220698906 cites W2014103906 @default.
- W4220698906 cites W2017386151 @default.
- W4220698906 cites W2018456659 @default.
- W4220698906 cites W2029197582 @default.
- W4220698906 cites W2029473169 @default.
- W4220698906 cites W2035192203 @default.
- W4220698906 cites W2040531695 @default.
- W4220698906 cites W2049597430 @default.
- W4220698906 cites W2052090210 @default.
- W4220698906 cites W2052895954 @default.
- W4220698906 cites W2056553520 @default.
- W4220698906 cites W2059347767 @default.
- W4220698906 cites W2076196781 @default.
- W4220698906 cites W2079032830 @default.
- W4220698906 cites W2084316196 @default.
- W4220698906 cites W2087357176 @default.
- W4220698906 cites W2088381358 @default.
- W4220698906 cites W2089490968 @default.
- W4220698906 cites W2089507620 @default.
- W4220698906 cites W2089846178 @default.
- W4220698906 cites W2100487098 @default.
- W4220698906 cites W2106839072 @default.
- W4220698906 cites W2111596627 @default.
- W4220698906 cites W2128610717 @default.
- W4220698906 cites W2129847692 @default.
- W4220698906 cites W2132295818 @default.
- W4220698906 cites W2141655611 @default.
- W4220698906 cites W2146371856 @default.
- W4220698906 cites W2164239813 @default.
- W4220698906 cites W2168294791 @default.
- W4220698906 cites W2171556834 @default.
- W4220698906 cites W2172127771 @default.
- W4220698906 cites W2273208516 @default.
- W4220698906 cites W2290915471 @default.
- W4220698906 cites W2316360431 @default.
- W4220698906 cites W2324234763 @default.
- W4220698906 cites W2334544477 @default.
- W4220698906 cites W2399006089 @default.
- W4220698906 cites W2473756584 @default.
- W4220698906 cites W2494566811 @default.
- W4220698906 cites W2527429662 @default.
- W4220698906 cites W2546402340 @default.
- W4220698906 cites W2765271609 @default.
- W4220698906 cites W2922274722 @default.
- W4220698906 cites W2947366632 @default.
- W4220698906 cites W2954049789 @default.
- W4220698906 cites W2966107275 @default.
- W4220698906 cites W3199363773 @default.
- W4220698906 cites W4232343057 @default.
- W4220698906 cites W2922536097 @default.
- W4220698906 doi "https://doi.org/10.5382/econgeo.4908" @default.
- W4220698906 hasPublicationYear "2022" @default.
- W4220698906 type Work @default.
- W4220698906 citedByCount "2" @default.
- W4220698906 countsByYear W42206989062023 @default.
- W4220698906 crossrefType "journal-article" @default.
- W4220698906 hasAuthorship W4220698906A5039399115 @default.
- W4220698906 hasAuthorship W4220698906A5050982684 @default.
- W4220698906 hasAuthorship W4220698906A5055734432 @default.
- W4220698906 hasAuthorship W4220698906A5087841627 @default.
- W4220698906 hasConcept C118552586 @default.
- W4220698906 hasConcept C127313418 @default.
- W4220698906 hasConcept C151730666 @default.
- W4220698906 hasConcept C156622251 @default.
- W4220698906 hasConcept C15744967 @default.
- W4220698906 hasConcept C17409809 @default.
- W4220698906 hasConcept C178790620 @default.
- W4220698906 hasConcept C185592680 @default.
- W4220698906 hasConcept C199289684 @default.
- W4220698906 hasConcept C2777202286 @default.
- W4220698906 hasConcept C2780191791 @default.
- W4220698906 hasConcept C2780659211 @default.
- W4220698906 hasConceptScore W4220698906C118552586 @default.
- W4220698906 hasConceptScore W4220698906C127313418 @default.
- W4220698906 hasConceptScore W4220698906C151730666 @default.
- W4220698906 hasConceptScore W4220698906C156622251 @default.
- W4220698906 hasConceptScore W4220698906C15744967 @default.
- W4220698906 hasConceptScore W4220698906C17409809 @default.
- W4220698906 hasConceptScore W4220698906C178790620 @default.
- W4220698906 hasConceptScore W4220698906C185592680 @default.
- W4220698906 hasConceptScore W4220698906C199289684 @default.