Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220700923> ?p ?o ?g. }
- W4220700923 endingPage "e35253" @default.
- W4220700923 startingPage "e35253" @default.
- W4220700923 abstract "Background The epidemiology of mental health disorders has important theoretical and practical implications for health care service and planning. The recent increase in big data storage and subsequent development of analytical tools suggest that mining search databases may yield important trends on mental health, which can be used to support existing population health studies. Objective This study aimed to map depression search intent in the United States based on internet-based mental health queries. Methods Weekly data on mental health searches were extracted from Google Trends for an 11-year period (2010-2021) and separated by US state for the following terms: “feeling sad,” “depressed,” “depression,” “empty,” “insomnia,” “fatigue,” “guilty,” “feeling guilty,” and “suicide.” Multivariable regression models were created based on geographic and environmental factors and normalized to the following control terms: “sports,” “news,” “google,” “youtube,” “facebook,” and “netflix.” Heat maps of population depression were generated based on search intent. Results Depression search intent grew 67% from January 2010 to March 2021. Depression search intent showed significant seasonal patterns with peak intensity during winter (adjusted P<.001) and early spring months (adjusted P<.001), relative to summer months. Geographic location correlated with depression search intent with states in the Northeast (adjusted P=.01) having higher search intent than states in the South. Conclusions The trends extrapolated from Google Trends successfully correlate with known risk factors for depression, such as seasonality and increasing latitude. These findings suggest that Google Trends may be a valid novel epidemiological tool to map depression prevalence in the United States." @default.
- W4220700923 created "2022-04-03" @default.
- W4220700923 creator A5005221234 @default.
- W4220700923 creator A5026162459 @default.
- W4220700923 creator A5027031803 @default.
- W4220700923 creator A5031833350 @default.
- W4220700923 creator A5035971663 @default.
- W4220700923 creator A5085443120 @default.
- W4220700923 date "2022-03-31" @default.
- W4220700923 modified "2023-10-14" @default.
- W4220700923 title "Utilizing Big Data From Google Trends to Map Population Depression in the United States: Exploratory Infodemiology Study" @default.
- W4220700923 cites W1605608606 @default.
- W4220700923 cites W1974758658 @default.
- W4220700923 cites W1989771767 @default.
- W4220700923 cites W1989903717 @default.
- W4220700923 cites W2005421703 @default.
- W4220700923 cites W2010793906 @default.
- W4220700923 cites W2021804141 @default.
- W4220700923 cites W2035982396 @default.
- W4220700923 cites W2039056175 @default.
- W4220700923 cites W2117239687 @default.
- W4220700923 cites W2121393149 @default.
- W4220700923 cites W2124170079 @default.
- W4220700923 cites W2127519617 @default.
- W4220700923 cites W2138560568 @default.
- W4220700923 cites W2162994164 @default.
- W4220700923 cites W2164826904 @default.
- W4220700923 cites W2334981384 @default.
- W4220700923 cites W2472687769 @default.
- W4220700923 cites W2603046226 @default.
- W4220700923 cites W2737966001 @default.
- W4220700923 cites W2741398090 @default.
- W4220700923 cites W2768273372 @default.
- W4220700923 cites W2789034326 @default.
- W4220700923 cites W2894773093 @default.
- W4220700923 cites W2989731923 @default.
- W4220700923 cites W3047626285 @default.
- W4220700923 cites W3081882923 @default.
- W4220700923 cites W3088867201 @default.
- W4220700923 cites W3093361474 @default.
- W4220700923 cites W3094037370 @default.
- W4220700923 cites W3104103523 @default.
- W4220700923 cites W3108491385 @default.
- W4220700923 cites W3111101306 @default.
- W4220700923 cites W4232801011 @default.
- W4220700923 cites W4237854744 @default.
- W4220700923 cites W4241586142 @default.
- W4220700923 doi "https://doi.org/10.2196/35253" @default.
- W4220700923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35357320" @default.
- W4220700923 hasPublicationYear "2022" @default.
- W4220700923 type Work @default.
- W4220700923 citedByCount "11" @default.
- W4220700923 countsByYear W42207009232022 @default.
- W4220700923 countsByYear W42207009232023 @default.
- W4220700923 crossrefType "journal-article" @default.
- W4220700923 hasAuthorship W4220700923A5005221234 @default.
- W4220700923 hasAuthorship W4220700923A5026162459 @default.
- W4220700923 hasAuthorship W4220700923A5027031803 @default.
- W4220700923 hasAuthorship W4220700923A5031833350 @default.
- W4220700923 hasAuthorship W4220700923A5035971663 @default.
- W4220700923 hasAuthorship W4220700923A5085443120 @default.
- W4220700923 hasBestOaLocation W42207009231 @default.
- W4220700923 hasConcept C107130276 @default.
- W4220700923 hasConcept C118552586 @default.
- W4220700923 hasConcept C122980154 @default.
- W4220700923 hasConcept C126322002 @default.
- W4220700923 hasConcept C134362201 @default.
- W4220700923 hasConcept C139719470 @default.
- W4220700923 hasConcept C144024400 @default.
- W4220700923 hasConcept C149923435 @default.
- W4220700923 hasConcept C15744967 @default.
- W4220700923 hasConcept C162324750 @default.
- W4220700923 hasConcept C2776867660 @default.
- W4220700923 hasConcept C2908647359 @default.
- W4220700923 hasConcept C71924100 @default.
- W4220700923 hasConcept C77805123 @default.
- W4220700923 hasConcept C99454951 @default.
- W4220700923 hasConceptScore W4220700923C107130276 @default.
- W4220700923 hasConceptScore W4220700923C118552586 @default.
- W4220700923 hasConceptScore W4220700923C122980154 @default.
- W4220700923 hasConceptScore W4220700923C126322002 @default.
- W4220700923 hasConceptScore W4220700923C134362201 @default.
- W4220700923 hasConceptScore W4220700923C139719470 @default.
- W4220700923 hasConceptScore W4220700923C144024400 @default.
- W4220700923 hasConceptScore W4220700923C149923435 @default.
- W4220700923 hasConceptScore W4220700923C15744967 @default.
- W4220700923 hasConceptScore W4220700923C162324750 @default.
- W4220700923 hasConceptScore W4220700923C2776867660 @default.
- W4220700923 hasConceptScore W4220700923C2908647359 @default.
- W4220700923 hasConceptScore W4220700923C71924100 @default.
- W4220700923 hasConceptScore W4220700923C77805123 @default.
- W4220700923 hasConceptScore W4220700923C99454951 @default.
- W4220700923 hasIssue "3" @default.
- W4220700923 hasLocation W42207009231 @default.
- W4220700923 hasLocation W42207009232 @default.
- W4220700923 hasLocation W42207009233 @default.
- W4220700923 hasLocation W42207009234 @default.
- W4220700923 hasOpenAccess W4220700923 @default.