Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220704633> ?p ?o ?g. }
- W4220704633 abstract "Hyperspectral imaging has recently gained increasing attention from academic and industrial world due to its capability of providing both spatial and physico-chemical information about the investigated objects. While this analytical approach is experiencing a substantial success and diffusion in very disparate scenarios, far less exploited is the possibility of collecting sequences of hyperspectral images over time for monitoring dynamic scenes. This trend is mainly justified by the fact that these so-called hyperspectral videos usually result in BIG DATA sets, requiring TBs of computer memory to be both stored and processed. Clearly, standard chemometric techniques do need to be somehow adapted or expanded to be capable of dealing with such massive amounts of information. In addition, hyperspectral video data are often affected by many different sources of variations in sample chemistry (for example, light absorption effects) and sample physics (light scattering effects) as well as by systematic errors (associated, e.g., to fluctuations in the behaviour of the light source and/or of the camera). Therefore, identifying, disentangling and interpreting all these distinct sources of information represents undoubtedly a challenging task. In view of all these aspects, the present work describes a multivariate hybrid modelling framework for the analysis of hyperspectral videos, which involves spatial, spectral and temporal parametrisations of both known and unknown chemical and physical phenomena underlying complex real-world systems. Such a framework encompasses three different computational steps: 1) motions ongoing within the inspected scene are estimated by optical flow analysis and compensated through IDLE modelling; 2) chemical variations are quantified and separated from physical variations by means of Extended Multiplicative Signal Correction (EMSC); 3) the resulting light scattering and light absorption data are subjected to the On-The-Fly Processing and summarised spectrally, spatially and over time. The developed methodology was here tested on a near-infrared hyperspectral video of a piece of wood undergoing drying. It led to a significant reduction of the size of the original measurements recorded and, at the same time, provided valuable information about systematic variations generated by the phenomena behind the monitored process." @default.
- W4220704633 created "2022-04-03" @default.
- W4220704633 creator A5021876108 @default.
- W4220704633 creator A5028442967 @default.
- W4220704633 creator A5079517355 @default.
- W4220704633 creator A5083693418 @default.
- W4220704633 date "2022-03-15" @default.
- W4220704633 modified "2023-09-26" @default.
- W4220704633 title "Hyperspectral Video Analysis by Motion and Intensity Preprocessing and Subspace Autoencoding" @default.
- W4220704633 cites W1578285471 @default.
- W4220704633 cites W1846252330 @default.
- W4220704633 cites W1972326413 @default.
- W4220704633 cites W1988386267 @default.
- W4220704633 cites W1990372984 @default.
- W4220704633 cites W1997320786 @default.
- W4220704633 cites W2000215628 @default.
- W4220704633 cites W2016090370 @default.
- W4220704633 cites W2033266347 @default.
- W4220704633 cites W2040088461 @default.
- W4220704633 cites W2055134456 @default.
- W4220704633 cites W2055289219 @default.
- W4220704633 cites W2058075292 @default.
- W4220704633 cites W2058805504 @default.
- W4220704633 cites W2058824963 @default.
- W4220704633 cites W2061171222 @default.
- W4220704633 cites W2067717363 @default.
- W4220704633 cites W2071128523 @default.
- W4220704633 cites W2075844424 @default.
- W4220704633 cites W2092280582 @default.
- W4220704633 cites W2099741732 @default.
- W4220704633 cites W2103379079 @default.
- W4220704633 cites W2119741678 @default.
- W4220704633 cites W2127644822 @default.
- W4220704633 cites W2294798173 @default.
- W4220704633 cites W2560020101 @default.
- W4220704633 cites W25670937 @default.
- W4220704633 cites W2742732267 @default.
- W4220704633 cites W2763706698 @default.
- W4220704633 cites W2793272303 @default.
- W4220704633 cites W2885469246 @default.
- W4220704633 cites W2962949934 @default.
- W4220704633 cites W2980948116 @default.
- W4220704633 cites W2989750467 @default.
- W4220704633 cites W3038018492 @default.
- W4220704633 cites W3088222965 @default.
- W4220704633 cites W4205778870 @default.
- W4220704633 doi "https://doi.org/10.3389/fchem.2022.818974" @default.
- W4220704633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35372286" @default.
- W4220704633 hasPublicationYear "2022" @default.
- W4220704633 type Work @default.
- W4220704633 citedByCount "0" @default.
- W4220704633 crossrefType "journal-article" @default.
- W4220704633 hasAuthorship W4220704633A5021876108 @default.
- W4220704633 hasAuthorship W4220704633A5028442967 @default.
- W4220704633 hasAuthorship W4220704633A5079517355 @default.
- W4220704633 hasAuthorship W4220704633A5083693418 @default.
- W4220704633 hasBestOaLocation W42207046331 @default.
- W4220704633 hasConcept C124101348 @default.
- W4220704633 hasConcept C153180895 @default.
- W4220704633 hasConcept C154945302 @default.
- W4220704633 hasConcept C159078339 @default.
- W4220704633 hasConcept C185592680 @default.
- W4220704633 hasConcept C198531522 @default.
- W4220704633 hasConcept C205649164 @default.
- W4220704633 hasConcept C31972630 @default.
- W4220704633 hasConcept C34736171 @default.
- W4220704633 hasConcept C41008148 @default.
- W4220704633 hasConcept C43617362 @default.
- W4220704633 hasConcept C62649853 @default.
- W4220704633 hasConceptScore W4220704633C124101348 @default.
- W4220704633 hasConceptScore W4220704633C153180895 @default.
- W4220704633 hasConceptScore W4220704633C154945302 @default.
- W4220704633 hasConceptScore W4220704633C159078339 @default.
- W4220704633 hasConceptScore W4220704633C185592680 @default.
- W4220704633 hasConceptScore W4220704633C198531522 @default.
- W4220704633 hasConceptScore W4220704633C205649164 @default.
- W4220704633 hasConceptScore W4220704633C31972630 @default.
- W4220704633 hasConceptScore W4220704633C34736171 @default.
- W4220704633 hasConceptScore W4220704633C41008148 @default.
- W4220704633 hasConceptScore W4220704633C43617362 @default.
- W4220704633 hasConceptScore W4220704633C62649853 @default.
- W4220704633 hasLocation W42207046331 @default.
- W4220704633 hasLocation W42207046332 @default.
- W4220704633 hasLocation W42207046333 @default.
- W4220704633 hasLocation W42207046334 @default.
- W4220704633 hasOpenAccess W4220704633 @default.
- W4220704633 hasPrimaryLocation W42207046331 @default.
- W4220704633 hasRelatedWork W2028628118 @default.
- W4220704633 hasRelatedWork W2066259560 @default.
- W4220704633 hasRelatedWork W2148258325 @default.
- W4220704633 hasRelatedWork W2353388427 @default.
- W4220704633 hasRelatedWork W2380927352 @default.
- W4220704633 hasRelatedWork W2391959412 @default.
- W4220704633 hasRelatedWork W2899307613 @default.
- W4220704633 hasRelatedWork W2997394683 @default.
- W4220704633 hasRelatedWork W3173596272 @default.
- W4220704633 hasRelatedWork W1966592431 @default.
- W4220704633 hasVolume "10" @default.
- W4220704633 isParatext "false" @default.
- W4220704633 isRetracted "false" @default.