Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220709852> ?p ?o ?g. }
- W4220709852 abstract "Abstract Increased consumption of water resource due to rapid growth of population has certainly reduced the groundwater storage beneath the earth which leads certain challenges to human being in recent time. For optimal management of this vital resource, exploration of groundwater potential zone (GWPZ) has become essential. We have applied Analytical Hierarchy Process (AHP), Frequency Ratio (FR) and two machine learning techniques specifically Random Forest (RF) and Naïve Bayes (NB) here to delineate GWPZ in Gandheswari River Basin in Chota Nagpur Plateau, India. To achieve the goal of the study, twelve factors that determine occurrence of groundwater have been selected for inter-thematic correlations and overlaid with location of wells. These factors include elevation, drainage density, slope, lithology, geomorphology, topographical wetness index (TWI), distance from the river, rainfall, lineament density, Normalized Difference Vegetation Index (NDVI), soil, and Land use and Land cover (LULC). A total 170 points including 85 in well site and 85 in non-well site have been selected randomly and allocated into two parts: training and testing at the share of 70:30. The implemented methods have significantly provided five GWPZs specifically Very Good (VG), Good (G), Moderate (M), Poor (P) and Very Poor (VP) with high and acceptable accuracy. The study also finds that geomorphology, slope, rainfall and elevation have greater importance in shaping GWPZs than LULC, NDVI, etc. Model performance has been tested with receiver operator characteristics (ROC), Accuracy (ACC), Kappa Coefficient, MAE, RMSE, etc., methods. Area under curve (AUC) in ROC curve has revealed that accuracy level of AHP, FR, RF and NB is 78.8%, 81%, 85.3% and 85.5, respectively. The machine learning techniques coupled with AHP and FR unveil effective delineation of groundwater potential area in said river basin which by genetically offers low primary porosity due to lithological constrains. Therefore, the study can be helpful in watershed management and identifying appropriate location wells in future." @default.
- W4220709852 created "2022-04-03" @default.
- W4220709852 creator A5019155523 @default.
- W4220709852 creator A5047060493 @default.
- W4220709852 creator A5050420102 @default.
- W4220709852 creator A5056637076 @default.
- W4220709852 date "2022-03-09" @default.
- W4220709852 modified "2023-10-13" @default.
- W4220709852 title "Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India" @default.
- W4220709852 cites W1192997862 @default.
- W4220709852 cites W1963921604 @default.
- W4220709852 cites W1989319038 @default.
- W4220709852 cites W1998025025 @default.
- W4220709852 cites W2043561677 @default.
- W4220709852 cites W2050807833 @default.
- W4220709852 cites W2054141762 @default.
- W4220709852 cites W2061637401 @default.
- W4220709852 cites W2142827986 @default.
- W4220709852 cites W2143296882 @default.
- W4220709852 cites W2278830514 @default.
- W4220709852 cites W2570489808 @default.
- W4220709852 cites W2593192809 @default.
- W4220709852 cites W2606804832 @default.
- W4220709852 cites W2609194414 @default.
- W4220709852 cites W2613187914 @default.
- W4220709852 cites W2730344763 @default.
- W4220709852 cites W2757787785 @default.
- W4220709852 cites W2769460792 @default.
- W4220709852 cites W2769668329 @default.
- W4220709852 cites W2777926084 @default.
- W4220709852 cites W2806464041 @default.
- W4220709852 cites W2889990930 @default.
- W4220709852 cites W2891574421 @default.
- W4220709852 cites W2902438914 @default.
- W4220709852 cites W2904803993 @default.
- W4220709852 cites W2914012905 @default.
- W4220709852 cites W2920797498 @default.
- W4220709852 cites W2927539500 @default.
- W4220709852 cites W2945344574 @default.
- W4220709852 cites W2967801159 @default.
- W4220709852 cites W2978899326 @default.
- W4220709852 cites W2989200694 @default.
- W4220709852 cites W2994847149 @default.
- W4220709852 cites W3004307978 @default.
- W4220709852 cites W3008649749 @default.
- W4220709852 cites W3010757542 @default.
- W4220709852 cites W3013058427 @default.
- W4220709852 cites W3015180749 @default.
- W4220709852 cites W3015368251 @default.
- W4220709852 cites W3015774492 @default.
- W4220709852 cites W3023830374 @default.
- W4220709852 cites W3034209994 @default.
- W4220709852 cites W3045040272 @default.
- W4220709852 cites W3080135715 @default.
- W4220709852 cites W3087870633 @default.
- W4220709852 cites W3088387500 @default.
- W4220709852 cites W3094823734 @default.
- W4220709852 cites W3115858393 @default.
- W4220709852 cites W3135751065 @default.
- W4220709852 cites W3157800422 @default.
- W4220709852 cites W3188744712 @default.
- W4220709852 cites W3215321796 @default.
- W4220709852 cites W566505230 @default.
- W4220709852 doi "https://doi.org/10.1007/s13201-022-01584-9" @default.
- W4220709852 hasPublicationYear "2022" @default.
- W4220709852 type Work @default.
- W4220709852 citedByCount "20" @default.
- W4220709852 countsByYear W42207098522022 @default.
- W4220709852 countsByYear W42207098522023 @default.
- W4220709852 crossrefType "journal-article" @default.
- W4220709852 hasAuthorship W4220709852A5019155523 @default.
- W4220709852 hasAuthorship W4220709852A5047060493 @default.
- W4220709852 hasAuthorship W4220709852A5050420102 @default.
- W4220709852 hasAuthorship W4220709852A5056637076 @default.
- W4220709852 hasBestOaLocation W42207098521 @default.
- W4220709852 hasConcept C111368507 @default.
- W4220709852 hasConcept C11413529 @default.
- W4220709852 hasConcept C114793014 @default.
- W4220709852 hasConcept C127313418 @default.
- W4220709852 hasConcept C127413603 @default.
- W4220709852 hasConcept C132651083 @default.
- W4220709852 hasConcept C144024400 @default.
- W4220709852 hasConcept C147176958 @default.
- W4220709852 hasConcept C149923435 @default.
- W4220709852 hasConcept C1549246 @default.
- W4220709852 hasConcept C186295008 @default.
- W4220709852 hasConcept C187320778 @default.
- W4220709852 hasConcept C18903297 @default.
- W4220709852 hasConcept C205649164 @default.
- W4220709852 hasConcept C2524010 @default.
- W4220709852 hasConcept C2776898743 @default.
- W4220709852 hasConcept C2778572946 @default.
- W4220709852 hasConcept C2779989982 @default.
- W4220709852 hasConcept C2780648208 @default.
- W4220709852 hasConcept C2908647359 @default.
- W4220709852 hasConcept C33556824 @default.
- W4220709852 hasConcept C33923547 @default.
- W4220709852 hasConcept C37054046 @default.
- W4220709852 hasConcept C39432304 @default.
- W4220709852 hasConcept C42475967 @default.