Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220712885> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4220712885 abstract "Stroke is an acute cerebrovascular disease with high incidence, high mortality, and high disability rate. Determining the location and volume of the disease in MR images promotes accurate stroke diagnosis and surgical planning. Therefore, the automatic recognition and segmentation of stroke lesions has important clinical significance for large-scale stroke imaging analysis. There are some problems in the segmentation of stroke lesions, such as imbalance of the front and back scenes, uncertainty of position, and unclear boundary. To meet this challenge, this paper proposes a cross-attention and deep supervision UNet (CADS-UNet) to segment chronic stroke lesions from T1-weighted MR images. Specifically, we propose a cross-spatial attention module, which is different from the usual self-attention module. The location information interactively selects encode features and decode features to enrich the lost spatial focus. At the same time, the channel attention mechanism is used to screen the channel characteristics. Finally, combined with deep supervision and mixed loss, the model is supervised more accurately. We compared and verified the model on the authoritative open dataset “Anatomical Tracings of Lesions After Stroke” (Atlas), which fully proved the effectiveness of our model." @default.
- W4220712885 created "2022-04-03" @default.
- W4220712885 creator A5006436767 @default.
- W4220712885 creator A5043209517 @default.
- W4220712885 creator A5058908860 @default.
- W4220712885 creator A5073419318 @default.
- W4220712885 date "2022-03-22" @default.
- W4220712885 modified "2023-10-18" @default.
- W4220712885 title "Cross-Attention and Deep Supervision UNet for Lesion Segmentation of Chronic Stroke" @default.
- W4220712885 cites W1215380709 @default.
- W4220712885 cites W1770510060 @default.
- W4220712885 cites W1901129140 @default.
- W4220712885 cites W1903029394 @default.
- W4220712885 cites W2139656398 @default.
- W4220712885 cites W2194775991 @default.
- W4220712885 cites W2217077692 @default.
- W4220712885 cites W2235915136 @default.
- W4220712885 cites W2395611524 @default.
- W4220712885 cites W2593816410 @default.
- W4220712885 cites W2774320778 @default.
- W4220712885 cites W2791723176 @default.
- W4220712885 cites W2884585870 @default.
- W4220712885 cites W2895023817 @default.
- W4220712885 cites W2896123015 @default.
- W4220712885 cites W2917880019 @default.
- W4220712885 cites W2943210864 @default.
- W4220712885 cites W2957267206 @default.
- W4220712885 cites W2962914239 @default.
- W4220712885 cites W2963361270 @default.
- W4220712885 cites W2966606126 @default.
- W4220712885 cites W2966967545 @default.
- W4220712885 cites W2995423635 @default.
- W4220712885 cites W3009475780 @default.
- W4220712885 cites W3026947018 @default.
- W4220712885 cites W3081400571 @default.
- W4220712885 cites W3169629772 @default.
- W4220712885 cites W4200236874 @default.
- W4220712885 cites W4206361110 @default.
- W4220712885 doi "https://doi.org/10.3389/fnins.2022.836412" @default.
- W4220712885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35392415" @default.
- W4220712885 hasPublicationYear "2022" @default.
- W4220712885 type Work @default.
- W4220712885 citedByCount "2" @default.
- W4220712885 countsByYear W42207128852023 @default.
- W4220712885 crossrefType "journal-article" @default.
- W4220712885 hasAuthorship W4220712885A5006436767 @default.
- W4220712885 hasAuthorship W4220712885A5043209517 @default.
- W4220712885 hasAuthorship W4220712885A5058908860 @default.
- W4220712885 hasAuthorship W4220712885A5073419318 @default.
- W4220712885 hasBestOaLocation W42207128851 @default.
- W4220712885 hasConcept C108583219 @default.
- W4220712885 hasConcept C127413603 @default.
- W4220712885 hasConcept C154945302 @default.
- W4220712885 hasConcept C2780645631 @default.
- W4220712885 hasConcept C41008148 @default.
- W4220712885 hasConcept C71924100 @default.
- W4220712885 hasConcept C78519656 @default.
- W4220712885 hasConcept C89600930 @default.
- W4220712885 hasConcept C99508421 @default.
- W4220712885 hasConceptScore W4220712885C108583219 @default.
- W4220712885 hasConceptScore W4220712885C127413603 @default.
- W4220712885 hasConceptScore W4220712885C154945302 @default.
- W4220712885 hasConceptScore W4220712885C2780645631 @default.
- W4220712885 hasConceptScore W4220712885C41008148 @default.
- W4220712885 hasConceptScore W4220712885C71924100 @default.
- W4220712885 hasConceptScore W4220712885C78519656 @default.
- W4220712885 hasConceptScore W4220712885C89600930 @default.
- W4220712885 hasConceptScore W4220712885C99508421 @default.
- W4220712885 hasLocation W42207128851 @default.
- W4220712885 hasLocation W42207128852 @default.
- W4220712885 hasLocation W42207128853 @default.
- W4220712885 hasOpenAccess W4220712885 @default.
- W4220712885 hasPrimaryLocation W42207128851 @default.
- W4220712885 hasRelatedWork W2731899572 @default.
- W4220712885 hasRelatedWork W2748952813 @default.
- W4220712885 hasRelatedWork W2790662084 @default.
- W4220712885 hasRelatedWork W2899084033 @default.
- W4220712885 hasRelatedWork W2954384599 @default.
- W4220712885 hasRelatedWork W2960184797 @default.
- W4220712885 hasRelatedWork W3104734424 @default.
- W4220712885 hasRelatedWork W3209779739 @default.
- W4220712885 hasRelatedWork W4226289457 @default.
- W4220712885 hasRelatedWork W4285827401 @default.
- W4220712885 hasVolume "16" @default.
- W4220712885 isParatext "false" @default.
- W4220712885 isRetracted "false" @default.
- W4220712885 workType "article" @default.