Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220715603> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4220715603 endingPage "026022" @default.
- W4220715603 startingPage "026022" @default.
- W4220715603 abstract "Objective.Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is used to study brain function and conduct neuropsychiatric therapy. Computational methods that are commonly used for electric field (E-field) dosimetry of TMS are limited in accuracy and precision because of possible geometric errors introduced in the generation of head models by segmenting medical images into tissue types. This paper studies E-field prediction fidelity as a function of segmentation accuracy.Approach.The errors in the segmentation of medical images into tissue types are modeled as geometric uncertainty in the shape of the boundary between tissue types. For each tissue boundary realization, we then use an in-house boundary element method to perform a forward propagation analysis and quantify the impact of tissue boundary uncertainties on the induced cortical E-field.Main results.Our results indicate that predictions of E-field induced in the brain are negligibly sensitive to segmentation errors in scalp, skull and white matter (WM), compartments. In contrast, E-field predictions are highly sensitive to possible cerebrospinal fluid (CSF) segmentation errors. Specifically, the segmentation errors on the CSF and gray matter interface lead to higher E-field uncertainties in the gyral crowns, and the segmentation errors on CSF and WM interface lead to higher uncertainties in the sulci. Furthermore, the uncertainty of the average cortical E-fields over a region exhibits lower uncertainty relative to point-wise estimates.Significance.The accuracy of current cortical E-field simulations is limited by the accuracy of CSF segmentation accuracy. Other quantities of interest like the average of the E-field over a cortical region could provide a dose quantity that is robust to possible segmentation errors." @default.
- W4220715603 created "2022-04-03" @default.
- W4220715603 creator A5025395694 @default.
- W4220715603 creator A5045196314 @default.
- W4220715603 creator A5049341927 @default.
- W4220715603 date "2022-03-30" @default.
- W4220715603 modified "2023-09-30" @default.
- W4220715603 title "Uncertainty quantification of TMS simulations considering MRI segmentation errors" @default.
- W4220715603 cites W1837874438 @default.
- W4220715603 cites W1858056047 @default.
- W4220715603 cites W1973596946 @default.
- W4220715603 cites W1986990180 @default.
- W4220715603 cites W1995412600 @default.
- W4220715603 cites W2008133587 @default.
- W4220715603 cites W2052986508 @default.
- W4220715603 cites W2062103870 @default.
- W4220715603 cites W2072962457 @default.
- W4220715603 cites W2079321251 @default.
- W4220715603 cites W2082526227 @default.
- W4220715603 cites W2095706095 @default.
- W4220715603 cites W2136221924 @default.
- W4220715603 cites W2136573752 @default.
- W4220715603 cites W2160420568 @default.
- W4220715603 cites W2162630772 @default.
- W4220715603 cites W2164910633 @default.
- W4220715603 cites W2167551960 @default.
- W4220715603 cites W2619158974 @default.
- W4220715603 cites W2754513039 @default.
- W4220715603 cites W2789987342 @default.
- W4220715603 cites W2791427514 @default.
- W4220715603 cites W2794168632 @default.
- W4220715603 cites W2908460620 @default.
- W4220715603 cites W2914922044 @default.
- W4220715603 cites W2951963925 @default.
- W4220715603 cites W2971867536 @default.
- W4220715603 cites W2978990056 @default.
- W4220715603 cites W3033878890 @default.
- W4220715603 cites W3034190502 @default.
- W4220715603 cites W3088800356 @default.
- W4220715603 cites W3115225298 @default.
- W4220715603 cites W3173208545 @default.
- W4220715603 cites W4230920194 @default.
- W4220715603 doi "https://doi.org/10.1088/1741-2552/ac5586" @default.
- W4220715603 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35169105" @default.
- W4220715603 hasPublicationYear "2022" @default.
- W4220715603 type Work @default.
- W4220715603 citedByCount "3" @default.
- W4220715603 countsByYear W42207156032023 @default.
- W4220715603 crossrefType "journal-article" @default.
- W4220715603 hasAuthorship W4220715603A5025395694 @default.
- W4220715603 hasAuthorship W4220715603A5045196314 @default.
- W4220715603 hasAuthorship W4220715603A5049341927 @default.
- W4220715603 hasConcept C124504099 @default.
- W4220715603 hasConcept C153180895 @default.
- W4220715603 hasConcept C154945302 @default.
- W4220715603 hasConcept C31972630 @default.
- W4220715603 hasConcept C41008148 @default.
- W4220715603 hasConcept C89600930 @default.
- W4220715603 hasConceptScore W4220715603C124504099 @default.
- W4220715603 hasConceptScore W4220715603C153180895 @default.
- W4220715603 hasConceptScore W4220715603C154945302 @default.
- W4220715603 hasConceptScore W4220715603C31972630 @default.
- W4220715603 hasConceptScore W4220715603C41008148 @default.
- W4220715603 hasConceptScore W4220715603C89600930 @default.
- W4220715603 hasFunder F4320337346 @default.
- W4220715603 hasIssue "2" @default.
- W4220715603 hasLocation W42207156031 @default.
- W4220715603 hasLocation W42207156032 @default.
- W4220715603 hasOpenAccess W4220715603 @default.
- W4220715603 hasPrimaryLocation W42207156031 @default.
- W4220715603 hasRelatedWork W1669643531 @default.
- W4220715603 hasRelatedWork W1982826852 @default.
- W4220715603 hasRelatedWork W2005437358 @default.
- W4220715603 hasRelatedWork W2008656436 @default.
- W4220715603 hasRelatedWork W2023558673 @default.
- W4220715603 hasRelatedWork W2110230079 @default.
- W4220715603 hasRelatedWork W2134924024 @default.
- W4220715603 hasRelatedWork W2517104666 @default.
- W4220715603 hasRelatedWork W2613186388 @default.
- W4220715603 hasRelatedWork W1967061043 @default.
- W4220715603 hasVolume "19" @default.
- W4220715603 isParatext "false" @default.
- W4220715603 isRetracted "false" @default.
- W4220715603 workType "article" @default.