Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220720281> ?p ?o ?g. }
- W4220720281 endingPage "100067" @default.
- W4220720281 startingPage "100067" @default.
- W4220720281 abstract "Cryo-electron tomography (Cryo-ET) provides unique opportunities to image cellular components at high resolution in their native state and environment. While many different cell types were investigated by cryo-ET, here we review application to neurons. We show that neurons are a versatile system that can be used to investigate general cellular components such as the cytoskeleton and membrane-bound organelles, in addition to neuron-specific processes such as synaptic transmission. Furthermore, the synapse provides a rich environment for the development of cryo-ET image processing tools suitable to elucidate the functional and spatial organization of compositionally and morphologically heterogeneous macromolecular complexes involved in biochemical signaling cascades, within their native, crowded cellular environments." @default.
- W4220720281 created "2022-04-03" @default.
- W4220720281 creator A5005942989 @default.
- W4220720281 creator A5056127593 @default.
- W4220720281 date "2022-01-01" @default.
- W4220720281 modified "2023-10-18" @default.
- W4220720281 title "Neurons as a model system for cryo-electron tomography" @default.
- W4220720281 cites W1938071689 @default.
- W4220720281 cites W1969128629 @default.
- W4220720281 cites W1970356391 @default.
- W4220720281 cites W1971737798 @default.
- W4220720281 cites W1972281577 @default.
- W4220720281 cites W1974845890 @default.
- W4220720281 cites W1979848714 @default.
- W4220720281 cites W1989396363 @default.
- W4220720281 cites W1989521332 @default.
- W4220720281 cites W2010816302 @default.
- W4220720281 cites W2016314394 @default.
- W4220720281 cites W2021581599 @default.
- W4220720281 cites W2025042015 @default.
- W4220720281 cites W2034062117 @default.
- W4220720281 cites W2037744310 @default.
- W4220720281 cites W2037785453 @default.
- W4220720281 cites W2039705840 @default.
- W4220720281 cites W2049137651 @default.
- W4220720281 cites W2055010027 @default.
- W4220720281 cites W2057430468 @default.
- W4220720281 cites W2059412195 @default.
- W4220720281 cites W2061463538 @default.
- W4220720281 cites W2065929054 @default.
- W4220720281 cites W2103710484 @default.
- W4220720281 cites W2105750894 @default.
- W4220720281 cites W2106393979 @default.
- W4220720281 cites W2120911443 @default.
- W4220720281 cites W2123176293 @default.
- W4220720281 cites W2127405396 @default.
- W4220720281 cites W2132214171 @default.
- W4220720281 cites W2167612537 @default.
- W4220720281 cites W2167773427 @default.
- W4220720281 cites W2199144091 @default.
- W4220720281 cites W2216594868 @default.
- W4220720281 cites W2290132634 @default.
- W4220720281 cites W2475510374 @default.
- W4220720281 cites W2484055001 @default.
- W4220720281 cites W2513935955 @default.
- W4220720281 cites W2530571916 @default.
- W4220720281 cites W2546951049 @default.
- W4220720281 cites W2570972408 @default.
- W4220720281 cites W2593053801 @default.
- W4220720281 cites W2746094884 @default.
- W4220720281 cites W2751898404 @default.
- W4220720281 cites W2765327979 @default.
- W4220720281 cites W2766786165 @default.
- W4220720281 cites W2783481291 @default.
- W4220720281 cites W2787027993 @default.
- W4220720281 cites W2806018109 @default.
- W4220720281 cites W2806480986 @default.
- W4220720281 cites W2808309264 @default.
- W4220720281 cites W2891588829 @default.
- W4220720281 cites W2910016110 @default.
- W4220720281 cites W2917254493 @default.
- W4220720281 cites W2922809127 @default.
- W4220720281 cites W2923488948 @default.
- W4220720281 cites W2987979134 @default.
- W4220720281 cites W2997491371 @default.
- W4220720281 cites W2998977323 @default.
- W4220720281 cites W3014347194 @default.
- W4220720281 cites W3037656127 @default.
- W4220720281 cites W3095611507 @default.
- W4220720281 cites W3128643952 @default.
- W4220720281 cites W3135793085 @default.
- W4220720281 cites W3158248085 @default.
- W4220720281 cites W3180371266 @default.
- W4220720281 cites W3211084271 @default.
- W4220720281 cites W4200159501 @default.
- W4220720281 cites W4200428016 @default.
- W4220720281 cites W4241860857 @default.
- W4220720281 cites W4361960923 @default.
- W4220720281 doi "https://doi.org/10.1016/j.yjsbx.2022.100067" @default.
- W4220720281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35310407" @default.
- W4220720281 hasPublicationYear "2022" @default.
- W4220720281 type Work @default.
- W4220720281 citedByCount "2" @default.
- W4220720281 countsByYear W42207202812023 @default.
- W4220720281 crossrefType "journal-article" @default.
- W4220720281 hasAuthorship W4220720281A5005942989 @default.
- W4220720281 hasAuthorship W4220720281A5056127593 @default.
- W4220720281 hasBestOaLocation W42207202811 @default.
- W4220720281 hasConcept C120665830 @default.
- W4220720281 hasConcept C121332964 @default.
- W4220720281 hasConcept C12554922 @default.
- W4220720281 hasConcept C127445978 @default.
- W4220720281 hasConcept C142669718 @default.
- W4220720281 hasConcept C146088050 @default.
- W4220720281 hasConcept C1491633281 @default.
- W4220720281 hasConcept C163716698 @default.
- W4220720281 hasConcept C168240541 @default.
- W4220720281 hasConcept C169760540 @default.