Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220726323> ?p ?o ?g. }
- W4220726323 endingPage "356" @default.
- W4220726323 startingPage "343" @default.
- W4220726323 abstract "<div class=section abstract><div class=htmlview paragraph>The fuel spray process is of utmost importance to internal combustion engine design as it dominates engine performance and emissions characteristics. While designers rely on computational fluid dynamics (CFD) modeling for understanding of the air-fuel mixing process, there are recognized shortcomings in current CFD spray predictions, particularly under super-critical or flash-boiling conditions. In contrast, time-resolved optical spray experiments have now produced datasets for the three-dimensional liquid distribution for a wide range of operating conditions and fuels. By utilizing such a large amount of detailed experimental data, the machine learning (ML) techniques have opened new pathways for the prediction of fuel sprays under various engine-like conditions. The ML approach for spray prediction is promising because (1) it does not require phenomenological spray models, (2) it can provide time-resolved spray data without time-stepping simulation, and (3) its evaluation has only a tiny fraction of the computational cost of a CFD simulation. In this study, an Artificial Neural Network (ANN) was applied for gasoline spray prediction under realistic engine conditions. Experimental data obtained under seven different fuels and three ambient conditions, totaling 21 different cases, were fed into a training procedure to investigate fuel effects on spray morphology. The quantitative validation results showed that the ANN is capable of predicting spray performance with nine input features, including fuel properties and ambient conditions. The ANN model fully trained on the experimental dataset showed greater accuracy in capturing the details of plume dynamics especially under flash-boiling conditions than the current state-of-the-art CFD model. While the ANN model cannot yet function or replace CFD in a full engine simulation, the ANN can be used now as a convenient design tool incorporating vast physical conditions.</div></div>" @default.
- W4220726323 created "2022-04-03" @default.
- W4220726323 creator A5003122103 @default.
- W4220726323 creator A5007378403 @default.
- W4220726323 creator A5010697127 @default.
- W4220726323 creator A5015670271 @default.
- W4220726323 creator A5033594099 @default.
- W4220726323 creator A5038483226 @default.
- W4220726323 creator A5068483265 @default.
- W4220726323 creator A5069911295 @default.
- W4220726323 date "2022-03-29" @default.
- W4220726323 modified "2023-10-16" @default.
- W4220726323 title "A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms" @default.
- W4220726323 cites W1489656539 @default.
- W4220726323 cites W1541453441 @default.
- W4220726323 cites W1986599790 @default.
- W4220726323 cites W2025318850 @default.
- W4220726323 cites W2033560129 @default.
- W4220726323 cites W2077741342 @default.
- W4220726323 cites W2117690143 @default.
- W4220726323 cites W2143410473 @default.
- W4220726323 cites W2503448445 @default.
- W4220726323 cites W2516987968 @default.
- W4220726323 cites W2576949538 @default.
- W4220726323 cites W2592973215 @default.
- W4220726323 cites W2608203329 @default.
- W4220726323 cites W2620801090 @default.
- W4220726323 cites W2624048931 @default.
- W4220726323 cites W2737338474 @default.
- W4220726323 cites W2767970747 @default.
- W4220726323 cites W2801340347 @default.
- W4220726323 cites W2810011832 @default.
- W4220726323 cites W2899283552 @default.
- W4220726323 cites W2969442073 @default.
- W4220726323 cites W2989643941 @default.
- W4220726323 cites W2997443281 @default.
- W4220726323 cites W3003779287 @default.
- W4220726323 cites W3005079760 @default.
- W4220726323 cites W3040166519 @default.
- W4220726323 cites W3041185500 @default.
- W4220726323 cites W3082364441 @default.
- W4220726323 cites W3126718396 @default.
- W4220726323 cites W3131622671 @default.
- W4220726323 cites W3165111305 @default.
- W4220726323 cites W3200779104 @default.
- W4220726323 cites W4241363768 @default.
- W4220726323 doi "https://doi.org/10.4271/2022-01-0492" @default.
- W4220726323 hasPublicationYear "2022" @default.
- W4220726323 type Work @default.
- W4220726323 citedByCount "1" @default.
- W4220726323 countsByYear W42207263232023 @default.
- W4220726323 crossrefType "journal-article" @default.
- W4220726323 hasAuthorship W4220726323A5003122103 @default.
- W4220726323 hasAuthorship W4220726323A5007378403 @default.
- W4220726323 hasAuthorship W4220726323A5010697127 @default.
- W4220726323 hasAuthorship W4220726323A5015670271 @default.
- W4220726323 hasAuthorship W4220726323A5033594099 @default.
- W4220726323 hasAuthorship W4220726323A5038483226 @default.
- W4220726323 hasAuthorship W4220726323A5068483265 @default.
- W4220726323 hasAuthorship W4220726323A5069911295 @default.
- W4220726323 hasBestOaLocation W42207263232 @default.
- W4220726323 hasConcept C103697071 @default.
- W4220726323 hasConcept C105923489 @default.
- W4220726323 hasConcept C111919701 @default.
- W4220726323 hasConcept C116705413 @default.
- W4220726323 hasConcept C119857082 @default.
- W4220726323 hasConcept C127413603 @default.
- W4220726323 hasConcept C146978453 @default.
- W4220726323 hasConcept C149629883 @default.
- W4220726323 hasConcept C1633027 @default.
- W4220726323 hasConcept C171146098 @default.
- W4220726323 hasConcept C178790620 @default.
- W4220726323 hasConcept C185592680 @default.
- W4220726323 hasConcept C190894226 @default.
- W4220726323 hasConcept C204323151 @default.
- W4220726323 hasConcept C21880701 @default.
- W4220726323 hasConcept C2776595511 @default.
- W4220726323 hasConcept C41008148 @default.
- W4220726323 hasConcept C44154836 @default.
- W4220726323 hasConcept C50644808 @default.
- W4220726323 hasConcept C548081761 @default.
- W4220726323 hasConcept C56200935 @default.
- W4220726323 hasConcept C78519656 @default.
- W4220726323 hasConcept C98045186 @default.
- W4220726323 hasConceptScore W4220726323C103697071 @default.
- W4220726323 hasConceptScore W4220726323C105923489 @default.
- W4220726323 hasConceptScore W4220726323C111919701 @default.
- W4220726323 hasConceptScore W4220726323C116705413 @default.
- W4220726323 hasConceptScore W4220726323C119857082 @default.
- W4220726323 hasConceptScore W4220726323C127413603 @default.
- W4220726323 hasConceptScore W4220726323C146978453 @default.
- W4220726323 hasConceptScore W4220726323C149629883 @default.
- W4220726323 hasConceptScore W4220726323C1633027 @default.
- W4220726323 hasConceptScore W4220726323C171146098 @default.
- W4220726323 hasConceptScore W4220726323C178790620 @default.
- W4220726323 hasConceptScore W4220726323C185592680 @default.
- W4220726323 hasConceptScore W4220726323C190894226 @default.
- W4220726323 hasConceptScore W4220726323C204323151 @default.