Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220727424> ?p ?o ?g. }
- W4220727424 endingPage "9536" @default.
- W4220727424 startingPage "9511" @default.
- W4220727424 abstract "During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications. In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a powerful tool to classify different crop types accurately. The readers of the present review could acquire the most challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to improve the performance of deep learning-based algorithms." @default.
- W4220727424 created "2022-04-03" @default.
- W4220727424 creator A5005064437 @default.
- W4220727424 creator A5037891173 @default.
- W4220727424 creator A5064615228 @default.
- W4220727424 creator A5079165539 @default.
- W4220727424 date "2022-03-05" @default.
- W4220727424 modified "2023-10-17" @default.
- W4220727424 title "Deep learning techniques to classify agricultural crops through UAV imagery: a review" @default.
- W4220727424 cites W1536680647 @default.
- W4220727424 cites W1849277567 @default.
- W4220727424 cites W1901129140 @default.
- W4220727424 cites W1903029394 @default.
- W4220727424 cites W1977336591 @default.
- W4220727424 cites W2035549557 @default.
- W4220727424 cites W2094128702 @default.
- W4220727424 cites W2097117768 @default.
- W4220727424 cites W2102605133 @default.
- W4220727424 cites W2112796928 @default.
- W4220727424 cites W2118246710 @default.
- W4220727424 cites W2183341477 @default.
- W4220727424 cites W2194775991 @default.
- W4220727424 cites W2412782625 @default.
- W4220727424 cites W2473156356 @default.
- W4220727424 cites W2554173462 @default.
- W4220727424 cites W2570343428 @default.
- W4220727424 cites W2593778105 @default.
- W4220727424 cites W2604086375 @default.
- W4220727424 cites W2618530766 @default.
- W4220727424 cites W2755766995 @default.
- W4220727424 cites W2775495931 @default.
- W4220727424 cites W2790979755 @default.
- W4220727424 cites W2809472397 @default.
- W4220727424 cites W2883780447 @default.
- W4220727424 cites W2884561390 @default.
- W4220727424 cites W2886554959 @default.
- W4220727424 cites W2886662616 @default.
- W4220727424 cites W2888404827 @default.
- W4220727424 cites W2896900710 @default.
- W4220727424 cites W2897017401 @default.
- W4220727424 cites W2897559184 @default.
- W4220727424 cites W2898498213 @default.
- W4220727424 cites W2901867974 @default.
- W4220727424 cites W2903052844 @default.
- W4220727424 cites W2903282641 @default.
- W4220727424 cites W2909240409 @default.
- W4220727424 cites W2911287241 @default.
- W4220727424 cites W2911964244 @default.
- W4220727424 cites W2913357179 @default.
- W4220727424 cites W2913725779 @default.
- W4220727424 cites W2914340986 @default.
- W4220727424 cites W2917901091 @default.
- W4220727424 cites W2918978557 @default.
- W4220727424 cites W2920621226 @default.
- W4220727424 cites W2921277556 @default.
- W4220727424 cites W2944647671 @default.
- W4220727424 cites W2945925278 @default.
- W4220727424 cites W2963037989 @default.
- W4220727424 cites W2963125010 @default.
- W4220727424 cites W2963150697 @default.
- W4220727424 cites W2963163009 @default.
- W4220727424 cites W2963446712 @default.
- W4220727424 cites W2963881378 @default.
- W4220727424 cites W2964350391 @default.
- W4220727424 cites W2966321657 @default.
- W4220727424 cites W2967268202 @default.
- W4220727424 cites W2968911939 @default.
- W4220727424 cites W2969316371 @default.
- W4220727424 cites W2971223741 @default.
- W4220727424 cites W2972006294 @default.
- W4220727424 cites W2980315690 @default.
- W4220727424 cites W2980522727 @default.
- W4220727424 cites W2982083293 @default.
- W4220727424 cites W2982381523 @default.
- W4220727424 cites W2986339177 @default.
- W4220727424 cites W2989079554 @default.
- W4220727424 cites W2989584745 @default.
- W4220727424 cites W2990265654 @default.
- W4220727424 cites W2994866182 @default.
- W4220727424 cites W2995803192 @default.
- W4220727424 cites W2996041315 @default.
- W4220727424 cites W2996445195 @default.
- W4220727424 cites W3001083904 @default.
- W4220727424 cites W3003765781 @default.
- W4220727424 cites W3007203656 @default.
- W4220727424 cites W3007561208 @default.
- W4220727424 cites W3007973394 @default.
- W4220727424 cites W3008279115 @default.
- W4220727424 cites W3009017987 @default.
- W4220727424 cites W3010873879 @default.
- W4220727424 cites W3013211776 @default.
- W4220727424 cites W3013810479 @default.
- W4220727424 cites W3019576236 @default.
- W4220727424 cites W3021205376 @default.
- W4220727424 cites W3022517580 @default.
- W4220727424 cites W3022518608 @default.
- W4220727424 cites W3028448552 @default.
- W4220727424 cites W3031227608 @default.