Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220729144> ?p ?o ?g. }
- W4220729144 abstract "Ribbons of two-dimensional lattices have properties depending sensitively on the morphology of the two edges. For regular ribbons with two parallel straight edges, the atomic chains terminating the two edges may have more than one choice for a general edge orientation. We enumerate the possible choices for zigzag dice lattice ribbons, which are regular ribbons of the dice lattice with edges parallel to a zigzag direction, and explore the relation between the edge morphologies and their electronic spectra. A formula is introduced to count the number of distinct edge termination morphologies for the regular ribbons, which gives 18 distinct edge termination morphologies for the zigzag dice lattice ribbons. For the pure dice model, because the equivalence of the two rim sublattices, the numerical spectra of the zigzag ribbons show qualitative degeneracies among the different edge termination morphologies. For the symmetrically biased dice model, we see a one-to-one correspondence between the 18 edge termination morphologies and their electronic spectra, when both the zero-energy flat bands and the dispersive or nonzero-energy in-gap states are considered. We analytically study several interesting features in the electronic spectra, including the number and wave functions of the zero-energy flat bands, and the analytical spectrum of unique in-gap states. The in-gap states of the zigzag dice lattice ribbons both exhibit interesting similarities and show salient differences when compared to the spectra of the zigzag ribbons of the honeycomb lattice." @default.
- W4220729144 created "2022-04-03" @default.
- W4220729144 creator A5014667973 @default.
- W4220729144 date "2022-03-07" @default.
- W4220729144 modified "2023-10-16" @default.
- W4220729144 title "Zigzag dice lattice ribbons: Distinct edge morphologies and structure-spectrum correspondences" @default.
- W4220729144 cites W1491016379 @default.
- W4220729144 cites W1674424879 @default.
- W4220729144 cites W1849057876 @default.
- W4220729144 cites W1963970602 @default.
- W4220729144 cites W1964546890 @default.
- W4220729144 cites W1964700675 @default.
- W4220729144 cites W1967051357 @default.
- W4220729144 cites W1967774452 @default.
- W4220729144 cites W1969658431 @default.
- W4220729144 cites W1976212732 @default.
- W4220729144 cites W1978619733 @default.
- W4220729144 cites W1978902563 @default.
- W4220729144 cites W1979276597 @default.
- W4220729144 cites W1983208835 @default.
- W4220729144 cites W1984654887 @default.
- W4220729144 cites W1992330719 @default.
- W4220729144 cites W2002303168 @default.
- W4220729144 cites W2021431123 @default.
- W4220729144 cites W2030628997 @default.
- W4220729144 cites W2035533039 @default.
- W4220729144 cites W2036015804 @default.
- W4220729144 cites W2038697346 @default.
- W4220729144 cites W2045416062 @default.
- W4220729144 cites W2046673726 @default.
- W4220729144 cites W2047737709 @default.
- W4220729144 cites W2049372046 @default.
- W4220729144 cites W2050837538 @default.
- W4220729144 cites W2061557594 @default.
- W4220729144 cites W2065590638 @default.
- W4220729144 cites W2066009637 @default.
- W4220729144 cites W2067297890 @default.
- W4220729144 cites W2073047667 @default.
- W4220729144 cites W2073529894 @default.
- W4220729144 cites W2074764316 @default.
- W4220729144 cites W2077862452 @default.
- W4220729144 cites W2079468187 @default.
- W4220729144 cites W2081977063 @default.
- W4220729144 cites W2085799130 @default.
- W4220729144 cites W2087638855 @default.
- W4220729144 cites W2092831789 @default.
- W4220729144 cites W2093694540 @default.
- W4220729144 cites W2095125190 @default.
- W4220729144 cites W2096325810 @default.
- W4220729144 cites W2118225223 @default.
- W4220729144 cites W2124277227 @default.
- W4220729144 cites W2140425267 @default.
- W4220729144 cites W2143767398 @default.
- W4220729144 cites W2262767520 @default.
- W4220729144 cites W2322214324 @default.
- W4220729144 cites W2341961777 @default.
- W4220729144 cites W2409374953 @default.
- W4220729144 cites W2561482222 @default.
- W4220729144 cites W2609285559 @default.
- W4220729144 cites W2741000904 @default.
- W4220729144 cites W2758148759 @default.
- W4220729144 cites W2793782798 @default.
- W4220729144 cites W2800800836 @default.
- W4220729144 cites W2853439962 @default.
- W4220729144 cites W2913142483 @default.
- W4220729144 cites W2963139017 @default.
- W4220729144 cites W2999469747 @default.
- W4220729144 cites W3018292583 @default.
- W4220729144 cites W3023810257 @default.
- W4220729144 cites W3038141841 @default.
- W4220729144 cites W3093253507 @default.
- W4220729144 cites W3093932539 @default.
- W4220729144 cites W3102321564 @default.
- W4220729144 cites W3104450349 @default.
- W4220729144 cites W3105294216 @default.
- W4220729144 cites W3105788908 @default.
- W4220729144 cites W3106298065 @default.
- W4220729144 cites W3124895462 @default.
- W4220729144 cites W3128507453 @default.
- W4220729144 cites W3130318284 @default.
- W4220729144 cites W3149092376 @default.
- W4220729144 cites W3168657054 @default.
- W4220729144 cites W3201353627 @default.
- W4220729144 cites W3204002831 @default.
- W4220729144 cites W3206245134 @default.
- W4220729144 cites W3206831154 @default.
- W4220729144 cites W3217411394 @default.
- W4220729144 cites W3217685932 @default.
- W4220729144 doi "https://doi.org/10.1103/physrevmaterials.6.034002" @default.
- W4220729144 hasPublicationYear "2022" @default.
- W4220729144 type Work @default.
- W4220729144 citedByCount "1" @default.
- W4220729144 countsByYear W42207291442023 @default.
- W4220729144 crossrefType "journal-article" @default.
- W4220729144 hasAuthorship W4220729144A5014667973 @default.
- W4220729144 hasBestOaLocation W42207291442 @default.
- W4220729144 hasConcept C121332964 @default.
- W4220729144 hasConcept C185592680 @default.
- W4220729144 hasConcept C192271897 @default.
- W4220729144 hasConcept C192562407 @default.