Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220729187> ?p ?o ?g. }
- W4220729187 endingPage "1745" @default.
- W4220729187 startingPage "1733" @default.
- W4220729187 abstract "MRI acts as a potential resource for exploration and interpretation to identify tumor characterization by advanced computer-aided diagnostic (CAD) methods.To evaluate and validate the performance of MRI-based CAD models for identifying low-grade and high-grade soft tissue sarcoma (STS) and for investigating survival prognostication.Retrospective.A total of 540 patients (295 male/female: 295/245, median age: 42 years) with STSs.5-T MRI with T1 WI sequence and fat-suppressed T2 -weighted (T2 FS) sequence.Manual regions of interests (ROIs) were delineated for generation of radiomic features. Automatic segmentation and pretrained convolutional neural networks (CNNs) were performed for deep learning (DL) analysis. The last fully connected layer at the top of CNNs was removed, and the global max pooling was added to transform feature maps to numeric values. Tumor grade was determined on histological specimens.The support vector machine was adopted as the classifier for all MRI-based models. The DL signature was derived from the DL-MRI model with the highest area under the curve (AUC). The significant clinical variables, tumor location and size, integrated with radiomics and DL signatures were ready for construction of clinical-MRI nomogram to identify tumor grading. The prognostic value of clinical variables and these MRI-based signatures for overall survival (OS) was evaluated via Cox proportional hazard.The clinical-MRI differentiation nomogram represented an AUC of 0.870 in the training cohort, and an AUC of 0.855, accuracy of 79.01%, sensitivity of 79.03%, and specificity of 78.95% in the validation cohort. The prognostic model showed good performance for OS with 3-year C-index of 0.681 and 0.642 and 5-year C-index of 0.722 and 0.676 in the training and validation cohorts.MRI-based CAD nomogram represents effective abilities in classification of low-grade and high-grade STSs. The MRI-based prognostic model yields favorable preoperative capacities to identify long-term survivals for STSs.3 TECHNICAL EFFICACY: Stage 4." @default.
- W4220729187 created "2022-04-03" @default.
- W4220729187 creator A5000117252 @default.
- W4220729187 creator A5002675089 @default.
- W4220729187 creator A5021930138 @default.
- W4220729187 creator A5025996303 @default.
- W4220729187 creator A5037861740 @default.
- W4220729187 date "2022-03-18" @default.
- W4220729187 modified "2023-10-12" @default.
- W4220729187 title "<scp>MRI</scp>‐Based Computer‐Aided Diagnostic Model to Predict Tumor Grading and Clinical Outcomes in Patients With Soft Tissue Sarcoma" @default.
- W4220729187 cites W1978377196 @default.
- W4220729187 cites W1983206829 @default.
- W4220729187 cites W2011446631 @default.
- W4220729187 cites W2041406732 @default.
- W4220729187 cites W2045030989 @default.
- W4220729187 cites W2061077502 @default.
- W4220729187 cites W2082271333 @default.
- W4220729187 cites W2088074688 @default.
- W4220729187 cites W2127890285 @default.
- W4220729187 cites W2133650808 @default.
- W4220729187 cites W2146215521 @default.
- W4220729187 cites W2163258576 @default.
- W4220729187 cites W2166339706 @default.
- W4220729187 cites W2174661749 @default.
- W4220729187 cites W2183341477 @default.
- W4220729187 cites W2253429366 @default.
- W4220729187 cites W2502134830 @default.
- W4220729187 cites W2531409750 @default.
- W4220729187 cites W2550944924 @default.
- W4220729187 cites W2725008604 @default.
- W4220729187 cites W2730458818 @default.
- W4220729187 cites W2767128594 @default.
- W4220729187 cites W2788633781 @default.
- W4220729187 cites W2794993152 @default.
- W4220729187 cites W2898145656 @default.
- W4220729187 cites W2913946492 @default.
- W4220729187 cites W2919115771 @default.
- W4220729187 cites W2927100983 @default.
- W4220729187 cites W2938860210 @default.
- W4220729187 cites W2964350391 @default.
- W4220729187 cites W2973062544 @default.
- W4220729187 cites W3003074332 @default.
- W4220729187 cites W3102564565 @default.
- W4220729187 cites W3103367279 @default.
- W4220729187 doi "https://doi.org/10.1002/jmri.28160" @default.
- W4220729187 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35303756" @default.
- W4220729187 hasPublicationYear "2022" @default.
- W4220729187 type Work @default.
- W4220729187 citedByCount "3" @default.
- W4220729187 countsByYear W42207291872022 @default.
- W4220729187 countsByYear W42207291872023 @default.
- W4220729187 crossrefType "journal-article" @default.
- W4220729187 hasAuthorship W4220729187A5000117252 @default.
- W4220729187 hasAuthorship W4220729187A5002675089 @default.
- W4220729187 hasAuthorship W4220729187A5021930138 @default.
- W4220729187 hasAuthorship W4220729187A5025996303 @default.
- W4220729187 hasAuthorship W4220729187A5037861740 @default.
- W4220729187 hasConcept C126322002 @default.
- W4220729187 hasConcept C126838900 @default.
- W4220729187 hasConcept C136948725 @default.
- W4220729187 hasConcept C142724271 @default.
- W4220729187 hasConcept C143409427 @default.
- W4220729187 hasConcept C143998085 @default.
- W4220729187 hasConcept C154945302 @default.
- W4220729187 hasConcept C18903297 @default.
- W4220729187 hasConcept C2777286243 @default.
- W4220729187 hasConcept C2778256501 @default.
- W4220729187 hasConcept C2778629024 @default.
- W4220729187 hasConcept C34626388 @default.
- W4220729187 hasConcept C41008148 @default.
- W4220729187 hasConcept C50382708 @default.
- W4220729187 hasConcept C71924100 @default.
- W4220729187 hasConcept C81363708 @default.
- W4220729187 hasConcept C86803240 @default.
- W4220729187 hasConceptScore W4220729187C126322002 @default.
- W4220729187 hasConceptScore W4220729187C126838900 @default.
- W4220729187 hasConceptScore W4220729187C136948725 @default.
- W4220729187 hasConceptScore W4220729187C142724271 @default.
- W4220729187 hasConceptScore W4220729187C143409427 @default.
- W4220729187 hasConceptScore W4220729187C143998085 @default.
- W4220729187 hasConceptScore W4220729187C154945302 @default.
- W4220729187 hasConceptScore W4220729187C18903297 @default.
- W4220729187 hasConceptScore W4220729187C2777286243 @default.
- W4220729187 hasConceptScore W4220729187C2778256501 @default.
- W4220729187 hasConceptScore W4220729187C2778629024 @default.
- W4220729187 hasConceptScore W4220729187C34626388 @default.
- W4220729187 hasConceptScore W4220729187C41008148 @default.
- W4220729187 hasConceptScore W4220729187C50382708 @default.
- W4220729187 hasConceptScore W4220729187C71924100 @default.
- W4220729187 hasConceptScore W4220729187C81363708 @default.
- W4220729187 hasConceptScore W4220729187C86803240 @default.
- W4220729187 hasIssue "6" @default.
- W4220729187 hasLocation W42207291871 @default.
- W4220729187 hasLocation W42207291872 @default.
- W4220729187 hasOpenAccess W4220729187 @default.
- W4220729187 hasPrimaryLocation W42207291871 @default.
- W4220729187 hasRelatedWork W2119693954 @default.
- W4220729187 hasRelatedWork W2150538964 @default.