Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220729540> ?p ?o ?g. }
- W4220729540 endingPage "111001" @default.
- W4220729540 startingPage "111001" @default.
- W4220729540 abstract "Fusion object detection using camera and LiDAR information in autonomous driving is still a challenging task, the difference between sensor data increases the difficulty of data fusion. To address this issue, we propose a multi-scale selective kernel fusion(MSSKF) method and demonstrate its practical utility by using LiDAR-camera fusion in object detection network. Specifically, a multi-scale feature fusion module that uses multi-scale convolution to separate the feature expression of multi-modal information and calculates the weight of each modal feature channel is proposed. We use the idea of multi-scale convolution and selection kernel to complete multi-modal fusion in object detection, which is conducive to solving the problem that the image and point cloud fusion are difficult to match due to the difference in data structure, and the complementarity of multi-modal information has been fully utilized. To verify the effectiveness of MSSKF, experiments on the KITTI object detection benchmark dataset are conducted. It has been observed that the proposed method achieves more accurate detection for pedestrians and vehicles, with a 1.6% gain in AP50 compared to the values of the original fusion method, reaching a score of 90.1%, and the mAP reached 60.9%. Experiments show that the proposed method introduces a new optimization idea for multi-modal fusion in the field of autonomous driving object detection, and the fusion detection efficiency is at over 12 fps on a single GPU." @default.
- W4220729540 created "2022-04-03" @default.
- W4220729540 creator A5013183833 @default.
- W4220729540 creator A5068805137 @default.
- W4220729540 creator A5061192433 @default.
- W4220729540 date "2022-05-01" @default.
- W4220729540 modified "2023-10-18" @default.
- W4220729540 title "Multi-scale multi-modal fusion for object detection in autonomous driving based on selective kernel" @default.
- W4220729540 cites W1536680647 @default.
- W4220729540 cites W2102605133 @default.
- W4220729540 cites W2346969910 @default.
- W4220729540 cites W2565639579 @default.
- W4220729540 cites W2752782242 @default.
- W4220729540 cites W2760327656 @default.
- W4220729540 cites W2887092226 @default.
- W4220729540 cites W2891529090 @default.
- W4220729540 cites W2922509574 @default.
- W4220729540 cites W2944303778 @default.
- W4220729540 cites W2949708697 @default.
- W4220729540 cites W2960170118 @default.
- W4220729540 cites W2963037989 @default.
- W4220729540 cites W2963351448 @default.
- W4220729540 cites W2965638232 @default.
- W4220729540 cites W2980759299 @default.
- W4220729540 cites W3025802147 @default.
- W4220729540 cites W3034314779 @default.
- W4220729540 cites W3034552520 @default.
- W4220729540 cites W3034681945 @default.
- W4220729540 cites W3035346742 @default.
- W4220729540 cites W3041796216 @default.
- W4220729540 cites W3102052994 @default.
- W4220729540 cites W3113107588 @default.
- W4220729540 cites W3176188210 @default.
- W4220729540 cites W3177472232 @default.
- W4220729540 cites W3190390211 @default.
- W4220729540 cites W3195927783 @default.
- W4220729540 cites W3203938210 @default.
- W4220729540 doi "https://doi.org/10.1016/j.measurement.2022.111001" @default.
- W4220729540 hasPublicationYear "2022" @default.
- W4220729540 type Work @default.
- W4220729540 citedByCount "9" @default.
- W4220729540 countsByYear W42207295402022 @default.
- W4220729540 countsByYear W42207295402023 @default.
- W4220729540 crossrefType "journal-article" @default.
- W4220729540 hasAuthorship W4220729540A5013183833 @default.
- W4220729540 hasAuthorship W4220729540A5061192433 @default.
- W4220729540 hasAuthorship W4220729540A5068805137 @default.
- W4220729540 hasConcept C114614502 @default.
- W4220729540 hasConcept C115961682 @default.
- W4220729540 hasConcept C131979681 @default.
- W4220729540 hasConcept C138885662 @default.
- W4220729540 hasConcept C153180895 @default.
- W4220729540 hasConcept C154945302 @default.
- W4220729540 hasConcept C158525013 @default.
- W4220729540 hasConcept C185592680 @default.
- W4220729540 hasConcept C188027245 @default.
- W4220729540 hasConcept C2776151529 @default.
- W4220729540 hasConcept C2776401178 @default.
- W4220729540 hasConcept C31972630 @default.
- W4220729540 hasConcept C33923547 @default.
- W4220729540 hasConcept C33954974 @default.
- W4220729540 hasConcept C41008148 @default.
- W4220729540 hasConcept C41895202 @default.
- W4220729540 hasConcept C69744172 @default.
- W4220729540 hasConcept C71139939 @default.
- W4220729540 hasConcept C74193536 @default.
- W4220729540 hasConceptScore W4220729540C114614502 @default.
- W4220729540 hasConceptScore W4220729540C115961682 @default.
- W4220729540 hasConceptScore W4220729540C131979681 @default.
- W4220729540 hasConceptScore W4220729540C138885662 @default.
- W4220729540 hasConceptScore W4220729540C153180895 @default.
- W4220729540 hasConceptScore W4220729540C154945302 @default.
- W4220729540 hasConceptScore W4220729540C158525013 @default.
- W4220729540 hasConceptScore W4220729540C185592680 @default.
- W4220729540 hasConceptScore W4220729540C188027245 @default.
- W4220729540 hasConceptScore W4220729540C2776151529 @default.
- W4220729540 hasConceptScore W4220729540C2776401178 @default.
- W4220729540 hasConceptScore W4220729540C31972630 @default.
- W4220729540 hasConceptScore W4220729540C33923547 @default.
- W4220729540 hasConceptScore W4220729540C33954974 @default.
- W4220729540 hasConceptScore W4220729540C41008148 @default.
- W4220729540 hasConceptScore W4220729540C41895202 @default.
- W4220729540 hasConceptScore W4220729540C69744172 @default.
- W4220729540 hasConceptScore W4220729540C71139939 @default.
- W4220729540 hasConceptScore W4220729540C74193536 @default.
- W4220729540 hasLocation W42207295401 @default.
- W4220729540 hasOpenAccess W4220729540 @default.
- W4220729540 hasPrimaryLocation W42207295401 @default.
- W4220729540 hasRelatedWork W137416770 @default.
- W4220729540 hasRelatedWork W2057200091 @default.
- W4220729540 hasRelatedWork W2090093270 @default.
- W4220729540 hasRelatedWork W2093000188 @default.
- W4220729540 hasRelatedWork W2382607599 @default.
- W4220729540 hasRelatedWork W2556085923 @default.
- W4220729540 hasRelatedWork W3123928227 @default.
- W4220729540 hasRelatedWork W3145385008 @default.
- W4220729540 hasRelatedWork W4310007291 @default.
- W4220729540 hasRelatedWork W4312873602 @default.