Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220731878> ?p ?o ?g. }
- W4220731878 endingPage "246" @default.
- W4220731878 startingPage "233" @default.
- W4220731878 abstract "Objective: The investigators estimated new-onset psychiatric disorders (PsyDs) throughout the COVID-19 pandemic in Italian adults without preexisting PsyDs and developed a machine learning (ML) model predictive of at least one new-onset PsyD in subsequent independent samples. Methods: Data were from the first (May 18–June 20, 2020) and second (September 15–October 20, 2020) waves of an ongoing longitudinal study, based on a self-reported online survey. Provisional diagnoses of PsyDs (PPsyDs) were assessed via DSM-based screening tools to maximize assessment specificity. Gradient-boosted decision trees as an ML modeling technique and the SHapley Additive exPlanations technique were applied to identify each variable’s contribution to the model. Results: From the original sample of 3,532 participants, the final sample included 500 participants in the first wave and 236 in the second. Some 16.0% of first-wave participants and 18.6% of second-wave participants met criteria for at least one new-onset PPsyD. The final best ML predictive model, trained on the first wave, displayed a sensitivity of 70% and a specificity of 73% when tested on the second wave. The following variables made the largest contributions: low resilience, being an undergraduate student, and being stressed by pandemic-related conditions. Living alone and having ceased physical activity contributed to a lesser extent. Conclusions: Substantial rates of new-onset PPsyDs emerged among Italians throughout the pandemic, and the ML model exhibited moderate predictive performance. Results highlight modifiable vulnerability factors that are suitable for targeting by public campaigns or interventions to mitigate the pandemic’s detrimental effects on mental health." @default.
- W4220731878 created "2022-04-03" @default.
- W4220731878 creator A5003770791 @default.
- W4220731878 creator A5011939326 @default.
- W4220731878 creator A5028146376 @default.
- W4220731878 creator A5043655310 @default.
- W4220731878 creator A5053773550 @default.
- W4220731878 creator A5082279419 @default.
- W4220731878 date "2022-07-01" @default.
- W4220731878 modified "2023-10-17" @default.
- W4220731878 title "Predicting New-Onset Psychiatric Disorders Throughout the COVID-19 Pandemic: A Machine Learning Approach" @default.
- W4220731878 cites W1525375904 @default.
- W4220731878 cites W1678356000 @default.
- W4220731878 cites W2102797406 @default.
- W4220731878 cites W2154053567 @default.
- W4220731878 cites W2156104108 @default.
- W4220731878 cites W2174561539 @default.
- W4220731878 cites W2763019469 @default.
- W4220731878 cites W2771021719 @default.
- W4220731878 cites W2807948025 @default.
- W4220731878 cites W2943410524 @default.
- W4220731878 cites W2964777343 @default.
- W4220731878 cites W2980127585 @default.
- W4220731878 cites W2980154628 @default.
- W4220731878 cites W2999930990 @default.
- W4220731878 cites W3015197879 @default.
- W4220731878 cites W3020448761 @default.
- W4220731878 cites W3021900567 @default.
- W4220731878 cites W3033373145 @default.
- W4220731878 cites W3035766265 @default.
- W4220731878 cites W3039647217 @default.
- W4220731878 cites W3041790447 @default.
- W4220731878 cites W3044441436 @default.
- W4220731878 cites W3047888467 @default.
- W4220731878 cites W3082145249 @default.
- W4220731878 cites W3086291318 @default.
- W4220731878 cites W3089103792 @default.
- W4220731878 cites W3093181506 @default.
- W4220731878 cites W3094873959 @default.
- W4220731878 cites W3095634118 @default.
- W4220731878 cites W3108549363 @default.
- W4220731878 cites W3108796842 @default.
- W4220731878 cites W3110783124 @default.
- W4220731878 cites W3114890290 @default.
- W4220731878 cites W3125120239 @default.
- W4220731878 doi "https://doi.org/10.1176/appi.neuropsych.21060148" @default.
- W4220731878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35306830" @default.
- W4220731878 hasPublicationYear "2022" @default.
- W4220731878 type Work @default.
- W4220731878 citedByCount "4" @default.
- W4220731878 countsByYear W42207318782022 @default.
- W4220731878 crossrefType "journal-article" @default.
- W4220731878 hasAuthorship W4220731878A5003770791 @default.
- W4220731878 hasAuthorship W4220731878A5011939326 @default.
- W4220731878 hasAuthorship W4220731878A5028146376 @default.
- W4220731878 hasAuthorship W4220731878A5043655310 @default.
- W4220731878 hasAuthorship W4220731878A5053773550 @default.
- W4220731878 hasAuthorship W4220731878A5082279419 @default.
- W4220731878 hasConcept C118552586 @default.
- W4220731878 hasConcept C119857082 @default.
- W4220731878 hasConcept C126322002 @default.
- W4220731878 hasConcept C142724271 @default.
- W4220731878 hasConcept C144024400 @default.
- W4220731878 hasConcept C149923435 @default.
- W4220731878 hasConcept C154945302 @default.
- W4220731878 hasConcept C15744967 @default.
- W4220731878 hasConcept C185592680 @default.
- W4220731878 hasConcept C198531522 @default.
- W4220731878 hasConcept C27415008 @default.
- W4220731878 hasConcept C2777895361 @default.
- W4220731878 hasConcept C2779134260 @default.
- W4220731878 hasConcept C3008058167 @default.
- W4220731878 hasConcept C38652104 @default.
- W4220731878 hasConcept C41008148 @default.
- W4220731878 hasConcept C43617362 @default.
- W4220731878 hasConcept C524204448 @default.
- W4220731878 hasConcept C70410870 @default.
- W4220731878 hasConcept C71924100 @default.
- W4220731878 hasConcept C89623803 @default.
- W4220731878 hasConcept C95713431 @default.
- W4220731878 hasConceptScore W4220731878C118552586 @default.
- W4220731878 hasConceptScore W4220731878C119857082 @default.
- W4220731878 hasConceptScore W4220731878C126322002 @default.
- W4220731878 hasConceptScore W4220731878C142724271 @default.
- W4220731878 hasConceptScore W4220731878C144024400 @default.
- W4220731878 hasConceptScore W4220731878C149923435 @default.
- W4220731878 hasConceptScore W4220731878C154945302 @default.
- W4220731878 hasConceptScore W4220731878C15744967 @default.
- W4220731878 hasConceptScore W4220731878C185592680 @default.
- W4220731878 hasConceptScore W4220731878C198531522 @default.
- W4220731878 hasConceptScore W4220731878C27415008 @default.
- W4220731878 hasConceptScore W4220731878C2777895361 @default.
- W4220731878 hasConceptScore W4220731878C2779134260 @default.
- W4220731878 hasConceptScore W4220731878C3008058167 @default.
- W4220731878 hasConceptScore W4220731878C38652104 @default.
- W4220731878 hasConceptScore W4220731878C41008148 @default.
- W4220731878 hasConceptScore W4220731878C43617362 @default.
- W4220731878 hasConceptScore W4220731878C524204448 @default.