Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220732012> ?p ?o ?g. }
- W4220732012 endingPage "123785" @default.
- W4220732012 startingPage "123785" @default.
- W4220732012 abstract "Estimating the wind speed correctly and reliably plays a key role in managing and operating wind energy power systems. Therefore an novelty adaptive estimation model (NAEM) combined with deep learning-based mode discretization has been developed for use in wind speed estimation in this study. This developed model consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the continuous wavelet transforms (CWT), the contrast limited adaptive histogram equalization (CLAHE), the particle swarm optimization (PSO), and convolutional neural network (CNN). Adaptive estimation model using decomposition method was presented as an alternative to the traditional data matrix transformation used in data preprocessing stage. Thus, both the usage firstly of this model in the data preprocessing stage and the creation of a hybrid structure by combining the methods included in this model for the first time constitute the most important innovative aspect of the study. Proposed model (NAEM) was tested in different case studies and RMSE, MAPE, and R2 were used as performance metrics. In the comparison with commonly used deep learning models (CNN-RNN, GRU, LSTM) the root means square error (RMSE) values decrease by 25.80%, 61.17% and 63.60% respectively. In addition, the power density value of the actual wind speeds was approached by 95.1% with the proposed NAEM." @default.
- W4220732012 created "2022-04-03" @default.
- W4220732012 creator A5028252017 @default.
- W4220732012 creator A5065317328 @default.
- W4220732012 date "2022-06-01" @default.
- W4220732012 modified "2023-10-09" @default.
- W4220732012 title "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)" @default.
- W4220732012 cites W1185746543 @default.
- W4220732012 cites W1514832573 @default.
- W4220732012 cites W1705374184 @default.
- W4220732012 cites W1963047559 @default.
- W4220732012 cites W1970978817 @default.
- W4220732012 cites W1976741468 @default.
- W4220732012 cites W1984061847 @default.
- W4220732012 cites W1987302169 @default.
- W4220732012 cites W1989425731 @default.
- W4220732012 cites W2002467466 @default.
- W4220732012 cites W2006493581 @default.
- W4220732012 cites W2009465763 @default.
- W4220732012 cites W2020383304 @default.
- W4220732012 cites W2041239017 @default.
- W4220732012 cites W2074715647 @default.
- W4220732012 cites W2074982533 @default.
- W4220732012 cites W2078667481 @default.
- W4220732012 cites W2081830900 @default.
- W4220732012 cites W2086590688 @default.
- W4220732012 cites W2088874310 @default.
- W4220732012 cites W2107191190 @default.
- W4220732012 cites W2111393363 @default.
- W4220732012 cites W2111395484 @default.
- W4220732012 cites W2112796928 @default.
- W4220732012 cites W2152195021 @default.
- W4220732012 cites W2162602792 @default.
- W4220732012 cites W2165449016 @default.
- W4220732012 cites W2179417658 @default.
- W4220732012 cites W2401688955 @default.
- W4220732012 cites W2547937424 @default.
- W4220732012 cites W2581822685 @default.
- W4220732012 cites W2602857068 @default.
- W4220732012 cites W2611034349 @default.
- W4220732012 cites W2621900912 @default.
- W4220732012 cites W2744790985 @default.
- W4220732012 cites W2745338687 @default.
- W4220732012 cites W2754015034 @default.
- W4220732012 cites W2762198305 @default.
- W4220732012 cites W2767031373 @default.
- W4220732012 cites W2772647675 @default.
- W4220732012 cites W2775807939 @default.
- W4220732012 cites W2789989341 @default.
- W4220732012 cites W2790834859 @default.
- W4220732012 cites W2796601240 @default.
- W4220732012 cites W2801076518 @default.
- W4220732012 cites W2802087177 @default.
- W4220732012 cites W2883786748 @default.
- W4220732012 cites W2889378713 @default.
- W4220732012 cites W2892004704 @default.
- W4220732012 cites W2901964425 @default.
- W4220732012 cites W2915806950 @default.
- W4220732012 cites W2915893557 @default.
- W4220732012 cites W2919841204 @default.
- W4220732012 cites W2949750218 @default.
- W4220732012 cites W2969592804 @default.
- W4220732012 cites W2989494743 @default.
- W4220732012 cites W3000490574 @default.
- W4220732012 cites W3004665554 @default.
- W4220732012 cites W3022447792 @default.
- W4220732012 cites W3024610765 @default.
- W4220732012 cites W3025648060 @default.
- W4220732012 cites W3047937490 @default.
- W4220732012 cites W3092901533 @default.
- W4220732012 cites W3096560906 @default.
- W4220732012 cites W3099319035 @default.
- W4220732012 cites W3115103108 @default.
- W4220732012 cites W3128963000 @default.
- W4220732012 cites W3158610431 @default.
- W4220732012 cites W3181300778 @default.
- W4220732012 doi "https://doi.org/10.1016/j.energy.2022.123785" @default.
- W4220732012 hasPublicationYear "2022" @default.
- W4220732012 type Work @default.
- W4220732012 citedByCount "15" @default.
- W4220732012 countsByYear W42207320122022 @default.
- W4220732012 countsByYear W42207320122023 @default.
- W4220732012 crossrefType "journal-article" @default.
- W4220732012 hasAuthorship W4220732012A5028252017 @default.
- W4220732012 hasAuthorship W4220732012A5065317328 @default.
- W4220732012 hasConcept C105795698 @default.
- W4220732012 hasConcept C11413529 @default.
- W4220732012 hasConcept C115961682 @default.
- W4220732012 hasConcept C119599485 @default.
- W4220732012 hasConcept C121332964 @default.
- W4220732012 hasConcept C127413603 @default.
- W4220732012 hasConcept C136943445 @default.
- W4220732012 hasConcept C139945424 @default.
- W4220732012 hasConcept C153180895 @default.
- W4220732012 hasConcept C153294291 @default.
- W4220732012 hasConcept C154945302 @default.
- W4220732012 hasConcept C161067210 @default.
- W4220732012 hasConcept C30387639 @default.