Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220732023> ?p ?o ?g. }
- W4220732023 endingPage "118333" @default.
- W4220732023 startingPage "118333" @default.
- W4220732023 abstract "Molten salts have been used in solar thermal energy storage due to their high energy storage density, low cost and excellent chemical stability. However, their application is limited by “bad days” such as cloudy days and winter because the weak concentrated solar radiation cannot melt the salt. The current study indicates that through mixing pure salts, the melting point of molten salt can be decreased significantly while the latent heat is not impaired. This is very important for solar thermal energy storage systems on “bad days” because the system using the low-melting-point salt is still possible to work on these days. The case study was performed in Nottingham, the United Kingdom and Dezhou, China respectively. The pure salt and salt mixture were used as the heat transfer fluid and energy storage medium in the solar tower power plant. It is found that by using the low-melting-point salt eutectic, the yearly operation time of the plant is increased by 75 days for Dezhou and 33 days for Nottingham. In addition, a molecular simulation was performed to reveal the mechanism underlying the component-dependent thermal properties. Mixing pure salts is proved to be a simple method to improve the utilization efficiency of the solar power plant." @default.
- W4220732023 created "2022-04-03" @default.
- W4220732023 creator A5006592860 @default.
- W4220732023 creator A5008908102 @default.
- W4220732023 creator A5009988205 @default.
- W4220732023 creator A5015650761 @default.
- W4220732023 creator A5024858141 @default.
- W4220732023 creator A5045734491 @default.
- W4220732023 creator A5072017169 @default.
- W4220732023 date "2022-06-01" @default.
- W4220732023 modified "2023-10-17" @default.
- W4220732023 title "Component-dependent thermal properties of molten salt eutectics for solar thermal energy storage: Experiments, molecular simulation and applications" @default.
- W4220732023 cites W1167830769 @default.
- W4220732023 cites W1963545890 @default.
- W4220732023 cites W1965328888 @default.
- W4220732023 cites W1966368201 @default.
- W4220732023 cites W1972208566 @default.
- W4220732023 cites W1988725631 @default.
- W4220732023 cites W2000291980 @default.
- W4220732023 cites W2017579366 @default.
- W4220732023 cites W2022864935 @default.
- W4220732023 cites W2026284916 @default.
- W4220732023 cites W2030216404 @default.
- W4220732023 cites W2039199209 @default.
- W4220732023 cites W2058323811 @default.
- W4220732023 cites W2063490014 @default.
- W4220732023 cites W2075303783 @default.
- W4220732023 cites W2076753282 @default.
- W4220732023 cites W2158451933 @default.
- W4220732023 cites W2166852820 @default.
- W4220732023 cites W2211447767 @default.
- W4220732023 cites W2250385926 @default.
- W4220732023 cites W2325052205 @default.
- W4220732023 cites W2338716199 @default.
- W4220732023 cites W2390952678 @default.
- W4220732023 cites W2409080089 @default.
- W4220732023 cites W2491001334 @default.
- W4220732023 cites W2492645955 @default.
- W4220732023 cites W2522584568 @default.
- W4220732023 cites W2546207489 @default.
- W4220732023 cites W2606924477 @default.
- W4220732023 cites W2735812963 @default.
- W4220732023 cites W2737267575 @default.
- W4220732023 cites W2761486945 @default.
- W4220732023 cites W2779230367 @default.
- W4220732023 cites W2910157475 @default.
- W4220732023 cites W2945213102 @default.
- W4220732023 cites W2969882101 @default.
- W4220732023 cites W3009345088 @default.
- W4220732023 cites W3077766806 @default.
- W4220732023 cites W3082608265 @default.
- W4220732023 cites W3092526512 @default.
- W4220732023 cites W3146225122 @default.
- W4220732023 cites W3196235067 @default.
- W4220732023 cites W4229955706 @default.
- W4220732023 cites W4243935613 @default.
- W4220732023 cites W4361798666 @default.
- W4220732023 doi "https://doi.org/10.1016/j.applthermaleng.2022.118333" @default.
- W4220732023 hasPublicationYear "2022" @default.
- W4220732023 type Work @default.
- W4220732023 citedByCount "11" @default.
- W4220732023 countsByYear W42207320232022 @default.
- W4220732023 countsByYear W42207320232023 @default.
- W4220732023 crossrefType "journal-article" @default.
- W4220732023 hasAuthorship W4220732023A5006592860 @default.
- W4220732023 hasAuthorship W4220732023A5008908102 @default.
- W4220732023 hasAuthorship W4220732023A5009988205 @default.
- W4220732023 hasAuthorship W4220732023A5015650761 @default.
- W4220732023 hasAuthorship W4220732023A5024858141 @default.
- W4220732023 hasAuthorship W4220732023A5045734491 @default.
- W4220732023 hasAuthorship W4220732023A5072017169 @default.
- W4220732023 hasBestOaLocation W42207320232 @default.
- W4220732023 hasConcept C107861326 @default.
- W4220732023 hasConcept C116915560 @default.
- W4220732023 hasConcept C119599485 @default.
- W4220732023 hasConcept C121332964 @default.
- W4220732023 hasConcept C127413603 @default.
- W4220732023 hasConcept C13530604 @default.
- W4220732023 hasConcept C159985019 @default.
- W4220732023 hasConcept C163258240 @default.
- W4220732023 hasConcept C178790620 @default.
- W4220732023 hasConcept C18168003 @default.
- W4220732023 hasConcept C183287310 @default.
- W4220732023 hasConcept C185592680 @default.
- W4220732023 hasConcept C191897082 @default.
- W4220732023 hasConcept C192562407 @default.
- W4220732023 hasConcept C204530211 @default.
- W4220732023 hasConcept C2776371256 @default.
- W4220732023 hasConcept C2778353533 @default.
- W4220732023 hasConcept C2779473208 @default.
- W4220732023 hasConcept C2780026712 @default.
- W4220732023 hasConcept C2994001752 @default.
- W4220732023 hasConcept C541104983 @default.
- W4220732023 hasConcept C73916439 @default.
- W4220732023 hasConcept C97355855 @default.
- W4220732023 hasConceptScore W4220732023C107861326 @default.
- W4220732023 hasConceptScore W4220732023C116915560 @default.
- W4220732023 hasConceptScore W4220732023C119599485 @default.