Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220736375> ?p ?o ?g. }
- W4220736375 endingPage "329" @default.
- W4220736375 startingPage "308" @default.
- W4220736375 abstract "Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB. Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB. IntroductionNeuroblastoma (NB) is the most common pediatric cancer affecting children younger than 5 years.1Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2021.CA Cancer J. Clin. 2021; 71: 7-33https://doi.org/10.3322/caac.21654Crossref PubMed Scopus (7019) Google Scholar, 2Mahapatra S. Challagundla K.B. Cancer, Neuroblastoma. StatPearls, 2020Google Scholar, 3Prathipati A. Pathania A.S. Chaturvedi N.K. Gupta S.C. Byrareddy S.N. Coulter D.W. Challagundla K.B. SAP30, an Oncogenic Driver of Progression, Survival, and Drug Resistance in High-Risk Neuroblastoma.Mol. Ther. Nucleic Acids. 2022; https://doi.org/10.1016/j.omtn.2022.03.014Abstract Full Text PDF Google Scholar NB develops from immature nerve cells, most commonly in adrenal glands situated above the kidney. NB accounts for 15% of childhood cancer-related mortality, and approximately 50% of children treated for high-risk NB have more aggressive tumor relapse with less than 20% 5-year overall survival.4Mueller S. Matthay K.K. Neuroblastoma: biology and staging.Curr. Oncol. Rep. 2009; 11: 431-438https://doi.org/10.1007/s11912-009-0059-6Crossref PubMed Scopus (78) Google Scholar, 5London W.B. Castel V. Monclair T. Ambros P.F. Pearson A.D. Cohn S.L. Berthold F. Nakagawara A. Ladenstein R.L. Iehara T. Matthay K.K. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project.J. Clin. Oncol. 2011; 29: 3286-3292https://doi.org/10.1200/jco.2010.34.3392Crossref PubMed Scopus (0) Google Scholar, 6Smith M.A. Seibel N.L. Altekruse S.F. Ries L.A. Melbert D.L. O'Leary M. Smith F.O. Reaman G.H. Outcomes for children and adolescents with cancer: challenges for the twenty-first century.J. Clin. Oncol. 2010; 28: 2625-2634https://doi.org/10.1200/jco.2009.27.0421Crossref PubMed Scopus (0) Google Scholar, 7Spix C. Pastore G. Sankila R. Stiller C.A. Steliarova-Foucher E. Neuroblastoma incidence and survival in European children (1978-1997): report from the automated childhood cancer information system project.Eur. J. Cancer. 2006; 42: 2081-2091https://doi.org/10.1016/j.ejca.2006.05.008Abstract Full Text Full Text PDF PubMed Scopus (155) Google Scholar During embryogenesis, multipotent neural crest cells differentiate into multiple cell types, including sympathetic neurons, adrenal medullary cells, and modified postganglionic sympathetic neurons.8Yamamoto M. Yanai R. Arishima K. Study of migration of neural crest cells to adrenal medulla by three-dimensional reconstruction.J. Vet. Med. Sci. 2004; 66: 635-641https://doi.org/10.1292/jvms.66.635Crossref PubMed Scopus (15) Google Scholar,9Chung K.F. Sicard F. Vukicevic V. Hermann A. Storch A. Huttner W.B. Bornstein S.R. Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla.Stem Cell. 2009; 27: 2602-2613https://doi.org/10.1002/stem.180Crossref PubMed Scopus (51) Google Scholar The deregulation of signaling pathways involved in the differentiation of neural crest cells leads to NB development in the sympathetic nervous system or medullar region of the adrenal glands. NBs are highly heterogeneous tumors consisting of various sub-cell types, and they display various genomic alterations, including MYCN amplification,10Huang M. Weiss W.A. Neuroblastoma and MYCN.Cold Spring Harb. Perspect. Med. 2013; 3: a014415https://doi.org/10.1101/cshperspect.a014415Crossref PubMed Scopus (361) Google Scholar different DNA ploidy patterns,11Kusafuka T. Fukuzawa M. Oue T. Yoneda A. Okada A. Satani M. DNA flow cytometric analysis of neuroblastoma: distinction of tetraploidy subset.J. Pediatr. Surg. 1994; 29: 543-547https://doi.org/10.1016/0022-3468(94)90087-6Abstract Full Text PDF PubMed Scopus (9) Google Scholar deletion in the short arm of chromosome 1,12Ritke M.K. Shah R. Valentine M. Douglass E.C. Tereba A. Molecular analysis of chromosome 1 abnormalities in neuroblastoma.Cytogenet. Cell Genet. 1989; 50: 84-90https://doi.org/10.1159/000132729Crossref PubMed Scopus (24) Google Scholar a gain of chromosome 17q,13Plantaz D. Mohapatra G. Matthay K.K. Pellarin M. Seeger R.C. Feuerstein B.G. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization.Am. J. Pathol. 1997; 150: 81-89PubMed Google Scholar and chromosome 11q deletion.14Mlakar V. Jurkovic Mlakar S. Lopez G. Maris J.M. Ansari M. Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications.Mol. Cancer. 2017; 16: 114https://doi.org/10.1186/s12943-017-0686-8Crossref PubMed Scopus (62) Google Scholar These genomic alterations, along with International NB Staging System, stage histopathology and age are used to classify NB patients into risk groups.15Brisse H.J. McCarville M.B. Granata C. Krug K.B. Wootton-Gorges S.L. Kanegawa K. Giammarile F. Schmidt M. Shulkin B.L. Matthay K.K. et al.Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project.Radiology. 2011; 261: 243-257https://doi.org/10.1148/radiol.11101352Crossref PubMed Scopus (291) Google Scholar,16Davidoff A.M. Neuroblastoma.Semin. Pediatr. Surg. 2012; 21: 2-14https://doi.org/10.1053/j.sempedsurg.2011.10.009Crossref PubMed Scopus (141) Google Scholar The high-risk NB patients are challenging to treat and require high doses of chemotherapy and radiotherapy in the clinic.17Smith V. Foster J. High-risk neuroblastoma treatment review.Children (Basel). 2018; 5: 114https://doi.org/10.3390/children5090114Crossref Scopus (93) Google Scholar, 18Matthay K.K. Villablanca J.G. Seeger R.C. Stram D.O. Harris R.E. Ramsay N.K. Swift P. Shimada H. Black C.T. Brodeur G.M. et al.Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group.N. Engl. J. Med. 1999; 341: 1165-1173https://doi.org/10.1056/nejm199910143411601Crossref PubMed Scopus (0) Google Scholar, 19Coughlan D. Gianferante M. Lynch C.F. Stevens J.L. Harlan L.C. Treatment and survival of childhood neuroblastoma: evidence from a population-based study in the United States.Pediatr. Hematol. Oncol. 2017; 34: 320-330https://doi.org/10.1080/08880018.2017.1373315Crossref PubMed Scopus (46) Google Scholar The chances of tumor regression (>50%) and death rate (41.7% compared with 0% in low-risk and 5.2% in intermediate-risk patients) in high-risk patients are higher than in other groups.19Coughlan D. Gianferante M. Lynch C.F. Stevens J.L. Harlan L.C. Treatment and survival of childhood neuroblastoma: evidence from a population-based study in the United States.Pediatr. Hematol. Oncol. 2017; 34: 320-330https://doi.org/10.1080/08880018.2017.1373315Crossref PubMed Scopus (46) Google Scholar,20Herd F. Basta N.O. McNally R.J.Q. Tweddle D.A. A systematic review of re-induction chemotherapy for children with relapsed high-risk neuroblastoma.Eur. J. Cancer. 2019; 111: 50-58https://doi.org/10.1016/j.ejca.2018.12.032Abstract Full Text Full Text PDF PubMed Scopus (12) Google Scholar Moreover, the use of intense treatment regimens has significant adverse effects on patients’ quality of life.Several investigators have tried different therapeutic approaches like high-dose chemotherapy, surgery, radiation therapy, stem cell transplantation, retinoid therapy, and immunotherapy to improve clinical outcomes in aggressive high-risk NB patients.17Smith V. Foster J. High-risk neuroblastoma treatment review.Children (Basel). 2018; 5: 114https://doi.org/10.3390/children5090114Crossref Scopus (93) Google Scholar,19Coughlan D. Gianferante M. Lynch C.F. Stevens J.L. Harlan L.C. Treatment and survival of childhood neuroblastoma: evidence from a population-based study in the United States.Pediatr. Hematol. Oncol. 2017; 34: 320-330https://doi.org/10.1080/08880018.2017.1373315Crossref PubMed Scopus (46) Google Scholar,21Fischer J. Pohl A. Volland R. Hero B. Dubbers M. Cernaianu G. Berthold F. von Schweinitz D. Simon T. Complete surgical resection improves outcome in INRG high-risk patients with localized neuroblastoma older than 18 months.BMC Cancer. 2017; 17: 520https://doi.org/10.1186/s12885-017-3493-0Crossref PubMed Scopus (41) Google Scholar,22Armideo E. Callahan C. Madonia L. Immunotherapy for high-risk neuroblastoma: management of side effects and complications.J. Adv. Pract. Oncol. 2017; 8: 44-55https://doi.org/10.6004/jadpro.2017.8.1.4Crossref PubMed Google Scholar Immunotherapy has recently gained traction in high-risk NB treatment and improved survival rates in patients.22Armideo E. Callahan C. Madonia L. Immunotherapy for high-risk neuroblastoma: management of side effects and complications.J. Adv. Pract. Oncol. 2017; 8: 44-55https://doi.org/10.6004/jadpro.2017.8.1.4Crossref PubMed Google Scholar,23Yu A.L. Gilman A.L. Ozkaynak M.F. London W.B. Kreissman S.G. Chen H.X. Smith M. Anderson B. Villablanca J.G. Matthay K.K. et al.Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.New Engl. J. Med. 2010; 363: 1324-1334https://doi.org/10.1056/nejmoa0911123Crossref PubMed Scopus (0) Google Scholar Immunotherapy treatment harnesses the CD8+T and natural killer (NK) cells to recognize, target, and eradicate malignant cells.24Ehlert K. Hansjuergens I. Zinke A. Otto S. Siebert N. Henze G. Lode H. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma.J. Immunother. Cancer. 2020; 8: e000540https://doi.org/10.1136/jitc-2020-000540Crossref PubMed Scopus (20) Google Scholar, 25Robert C. A decade of immune-checkpoint inhibitors in cancer therapy.Nat. Commun. 2020; 11: 3801https://doi.org/10.1038/s41467-020-17670-yCrossref PubMed Scopus (409) Google Scholar, 26Shirinbak S. Chan R.Y. Shahani S. Muthugounder S. Kennedy R. Hung L.T. Fernandez G.E. Hadjidaniel M.D. Moghimi B. Sheard M.A. et al.Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma.Oncoimmunology. 2021; 10: 1838140https://doi.org/10.1080/2162402x.2020.1838140Crossref PubMed Google Scholar The immunotherapy approach of using chimeric monoclonal anti-disialoganglioside (GD2) antibody dinutuximab has shown some success in NB clinical trials but is associated with severe side effects including neuropathic pain, infection, infusion-related reactions, capillary leak syndrome, decreased sensation, and paresthesia.23Yu A.L. Gilman A.L. Ozkaynak M.F. London W.B. Kreissman S.G. Chen H.X. Smith M. Anderson B. Villablanca J.G. Matthay K.K. et al.Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.New Engl. J. Med. 2010; 363: 1324-1334https://doi.org/10.1056/nejmoa0911123Crossref PubMed Scopus (0) Google Scholar,27Morandi F. Frassoni F. Ponzoni M. Brignole C. Novel immunotherapeutic approaches for neuroblastoma and malignant melanoma.J. Immunol. Res. 2018; 2018: 1-12https://doi.org/10.1155/2018/8097398Crossref Scopus (10) Google Scholar In NB, the levels of infiltrating CD8+T and NK cells correlate with therapy response.28Mina M. Boldrini R. Citti A. Romania P. D'Alicandro V. De Ioris M. Castellano A. Furlanello C. Locatelli F. Fruci D. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma.Oncoimmunology. 2015; 4: e1019981https://doi.org/10.1080/2162402x.2015.1019981Crossref PubMed Scopus (0) Google Scholar,29Hsu J. Hodgins J.J. Marathe M. Nicolai C.J. Bourgeois-Daigneault M.C. Trevino T.N. Azimi C.S. Scheer A.K. Randolph H.E. Thompson T.W. et al.Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade.J. Clin. Invest. 2018; 128: 4654-4668https://doi.org/10.1172/jci99317Crossref PubMed Scopus (0) Google Scholar Elevated levels of programmed death-ligand 1 (PD-L1 or CD274) have been found in NB tumors.28Mina M. Boldrini R. Citti A. Romania P. D'Alicandro V. De Ioris M. Castellano A. Furlanello C. Locatelli F. Fruci D. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma.Oncoimmunology. 2015; 4: e1019981https://doi.org/10.1080/2162402x.2015.1019981Crossref PubMed Scopus (0) Google Scholar,30Zuo S. Sho M. Sawai T. Kanehiro H. Maeda K. Yoshida M. Tsukada R. Nomura M. Okuyama H. Potential role of the PD-L1 expression and tumor-infiltrating lymphocytes on neuroblastoma.Pediatr. Surg. Int. 2020; 36: 137-143https://doi.org/10.1007/s00383-019-04616-9Crossref PubMed Scopus (8) Google Scholar,31Saletta F. Vilain R.E. Gupta A.K. Nagabushan S. Yuksel A. Catchpoole D. Scolyer R.A. Byrne J.A. McCowage G. Programmed death-ligand 1 expression in a large cohort of pediatric patients with Solid tumor and association with clinicopathologic features in neuroblastoma.JCO Precision Oncol. 2017; 1: 1-12https://doi.org/10.1200/po.16.00049Crossref PubMed Google Scholar Two recent reports suggested that higher PD-L1 expression positively correlates with worse outcomes in NB patients.30Zuo S. Sho M. Sawai T. Kanehiro H. Maeda K. Yoshida M. Tsukada R. Nomura M. Okuyama H. Potential role of the PD-L1 expression and tumor-infiltrating lymphocytes on neuroblastoma.Pediatr. Surg. Int. 2020; 36: 137-143https://doi.org/10.1007/s00383-019-04616-9Crossref PubMed Scopus (8) Google Scholar,31Saletta F. Vilain R.E. Gupta A.K. Nagabushan S. Yuksel A. Catchpoole D. Scolyer R.A. Byrne J.A. McCowage G. Programmed death-ligand 1 expression in a large cohort of pediatric patients with Solid tumor and association with clinicopathologic features in neuroblastoma.JCO Precision Oncol. 2017; 1: 1-12https://doi.org/10.1200/po.16.00049Crossref PubMed Google Scholar Patients with high PD-L1 expression had an increased risk of NB relapse and less overall survival compared with patients with low PD-L1 expression.30Zuo S. Sho M. Sawai T. Kanehiro H. Maeda K. Yoshida M. Tsukada R. Nomura M. Okuyama H. Potential role of the PD-L1 expression and tumor-infiltrating lymphocytes on neuroblastoma.Pediatr. Surg. Int. 2020; 36: 137-143https://doi.org/10.1007/s00383-019-04616-9Crossref PubMed Scopus (8) Google Scholar, 31Saletta F. Vilain R.E. Gupta A.K. Nagabushan S. Yuksel A. Catchpoole D. Scolyer R.A. Byrne J.A. McCowage G. Programmed death-ligand 1 expression in a large cohort of pediatric patients with Solid tumor and association with clinicopathologic features in neuroblastoma.JCO Precision Oncol. 2017; 1: 1-12https://doi.org/10.1200/po.16.00049Crossref PubMed Google Scholar, 32Nallasamy P. Chava S. Verma S.S. Mishra S. Gorantla S. Coulter D.W. Byrareddy S.N. Batra S.K. Gupta S.C. Challagundla K.B. PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective.Semin. Cancer Biol. 2018; 52: 53-65https://doi.org/10.1016/j.semcancer.2017.11.009Crossref PubMed Scopus (49) Google Scholar, 33Wei J.S. Kuznetsov I.B. Zhang S. Song Y.K. Asgharzadeh S. Sindiri S. Wen X. Patidar R. Najaraj S. Walton A. et al.Clinically relevant cytotoxic immune cell signatures and clonal expansion of T-cell receptors in high-risk MYCN-not-amplified human neuroblastoma.Clin. Cancer Res. 2018; 24: 5673-5684https://doi.org/10.1158/1078-0432.ccr-18-0599Crossref PubMed Scopus (0) Google Scholar Therefore, therapies targeting PD-L1 could strengthen anti-tumor immunity and offer a promising strategy to treat high-risk NB.Checkpoint inhibitor drugs that inhibit the PD-L1/PD-1 pathway have shown promising results in boosting immune responses and improving clinical outcomes in cancer patients. Food and Drug Administration (FDA) approval of PD-L1/PD-1 targeting drugs to treat cancer in recent years has attracted considerable interest in the discovery and development of improved PD-L1/PD-1 signaling pathway inhibitors. However, many patients do not respond well to these therapies and develop resistance and relapse.30Zuo S. Sho M. Sawai T. Kanehiro H. Maeda K. Yoshida M. Tsukada R. Nomura M. Okuyama H. Potential role of the PD-L1 expression and tumor-infiltrating lymphocytes on neuroblastoma.Pediatr. Surg. Int. 2020; 36: 137-143https://doi.org/10.1007/s00383-019-04616-9Crossref PubMed Scopus (8) Google Scholar,31Saletta F. Vilain R.E. Gupta A.K. Nagabushan S. Yuksel A. Catchpoole D. Scolyer R.A. Byrne J.A. McCowage G. Programmed death-ligand 1 expression in a large cohort of pediatric patients with Solid tumor and association with clinicopathologic features in neuroblastoma.JCO Precision Oncol. 2017; 1: 1-12https://doi.org/10.1200/po.16.00049Crossref PubMed Google Scholar,34Kluger H.M. Tawbi H.A. Ascierto M.L. Bowden M. Callahan M.K. Cha E. Chen H.X. Drake C.G. Feltquate D.M. Ferris R.L. et al.Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce.J. Immunother. Cancer. 2020; 8: e000398https://doi.org/10.1136/jitc-2019-000398Crossref PubMed Scopus (63) Google Scholar Therefore, there is a need for novel approaches that target PD-L1 upstream signaling pathways to overcome these challenges.Micro RNAs (miRs) are key upstream regulators in NB.35Misiak D. Hagemann S. Bell J.L. Busch B. Lederer M. Bley N. Schulte J.H. Huttelmaier S. The MicroRNA landscape of MYCN-amplified neuroblastoma.Front. Oncol. 2021; 11: 647737https://doi.org/10.3389/fonc.2021.647737Crossref PubMed Scopus (3) Google Scholar, 36Ooi C.Y. Carter D.R. Liu B. Mayoh C. Beckers A. Lalwani A. Nagy Z. De Brouwer S. Decaesteker B. Hung T.T. et al.Network modeling of microRNA-mRNA interactions in neuroblastoma tumorigenesis identifies miR-204 as a direct inhibitor of MYCN.Cancer Res. 2018; 78: 3122-3134https://doi.org/10.1158/0008-5472.can-17-3034Crossref PubMed Scopus (0) Google Scholar, 37Perri P. Ponzoni M. Corrias M.V. Ceccherini I. Candiani S. Bachetti T. A focus on regulatory networks linking MicroRNAs, transcription factors and target genes in neuroblastoma.Cancers (Basel). 2021; 13: 5528https://doi.org/10.3390/cancers13215528Crossref PubMed Scopus (8) Google Scholar Several miRs have been reported to have roles in NB progression recently.38Aravindan N. Subramanian K. Somasundaram D.B. Herman T.S. Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution.Cancer Drug Resist. 2019; 2: 1086-1105https://doi.org/10.20517/cdr.2019.68Crossref PubMed Scopus (18) Google Scholar, 39Pathania A.S. Prathipati P. Pandey M.K. Byrareddy S.N. Coulter D.W. Gupta S.C. Challagundla K.B. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers.Semin. Cancer Biol. 2021; S1044-579X: 00116-4https://doi.org/10.1016/j.semcancer.2021.04.015Crossref Scopus (5) Google Scholar, 40Mudgapalli N. Shaw B.P. Chava S. Challagundla K.B. The transcribed-ultra conserved regions: novel non-coding RNA players in neuroblastoma progression.Noncoding RNA. 2019; 5: 39https://doi.org/10.3390/ncrna5020039Crossref Google Scholar For example, suppression of MYCN targeting tumor-suppressor miRNA let-7 by LIN28B upregulates MYCN and promotes proliferation in non-malignant neuroblasts.41Molenaar J.J. Domingo-Fernandez R. Ebus M.E. Lindner S. Koster J. Drabek K. Mestdagh P. van Sluis P. Valentijn L.J. van Nes J. et al.LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression.Nat. Genet. 2012; 44: 1199-1206https://doi.org/10.1038/ng.2436Crossref PubMed Scopus (278) Google Scholar Amplification and overexpression of LIN28B or chromosomal loss of let-7 drives NB development and growth.42Powers J.T. Tsanov K.M. Pearson D.S. Roels F. Spina C.S. Ebright R. Seligson M. de Soysa Y. Cahan P. TheiBen J. et al.Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma.Nature. 2016; 535: 246-251https://doi.org/10.1038/nature18632Crossref PubMed Scopus (140) Google Scholar Moreover, downregulation of miR-34a,43Cole K.A. Attiyeh E.F. Mosse Y.P. Laquaglia M.J. Diskin S.J. Brodeur G.M. Maris J.M. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene.Mol. Cancer Res. 2008; 6: 735-742https://doi.org/10.1158/1541-7786.mcr-07-2102Crossref PubMed Scopus (0) Google Scholar miR-34b,44De Antonellis P. Carotenuto M. Vandenbussche J. De Vita G. Ferrucci V. Medaglia C. Boffa I. Galiero A. Di Somma S. Magliulo D. et al.Early targets of miR-34a in neuroblastoma.Mol. Cell. Proteomics. 2014; 13: 2114-2131https://doi.org/10.1074/mcp.m113.035808Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar miR-124b,45Nolan J.C. Salvucci M. Carberry S. Barat A. Segura M.F. Fenn J. Prehn J.H.M. Stallings R.L. Piskareva O. A context-dependent role for MiR-124-3p on cell phenotype, viability and chemosensitivity in neuroblastoma in vitro.Front. Cell Dev Biol. 2020; 8: 559553https://doi.org/10.3389/fcell.2020.559553Crossref PubMed Scopus (11) Google Scholar miR-145,46Zhang H. Pu J. Qi T. Qi M. Yang C. Li S. Huang K. Zheng L. Tong Q. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha.Oncogene. 2014; 33: 387-397https://doi.org/10.1038/onc.2012.574Crossref PubMed Scopus (115) Google Scholar miR-542,47Althoff K. Lindner S. Odersky A. Mestdagh P. Beckers A. Karczewski S. Molenaar J.J. Bohrer A. Knauer S. Speleman F. et al.miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin.Int. J. Cancer. 2015; 136: 1308-1320https://doi.org/10.1002/ijc.29091Crossref PubMed Scopus (76) Google Scholar miR-204,48Ryan J. Tivnan A. Fay J. Bryan K. Meehan M. Creevey L. Lynch J. Bray I.M. O'Meara A. Davidoff A.M. Stallings R.L. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome.Br. J. Cancer. 2012; 107: 967-976https://doi.org/10.1038/bjc.2012.356Crossref PubMed Scopus (104) Google Scholar and miR-27b,49Lee J.J. Drakaki A. Iliopoulos D. Struhl K. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells.Oncogene. 2012; 31: 3818-3825https://doi.org/10.1038/onc.2011.543Crossref PubMed Scopus (131) Google Scholar is strongly associated with NB progression and therapy resistance. We recently showed that exosomal miR-155 induces chemotherapy resistance by targeting TERF1, an inhibitor of telomerase complex activation within the tumor microenvironment.50Challagundla K.B. Wise P.M. Neviani P. Chava H. Murtadha M. Xu T. Kennedy R. Ivan C. Zhang X. Vannini I. et al.Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy.J. Natl. Cancer Inst. 2015; 107: djv135https://doi.org/10.1093/jnci/djv135Crossref PubMed Scopus (257) Google Scholar Several investigators have reported that a distinct set of miRs activate/inhibit the immune system at multiple levels, including regulation of the checkpoint molecule PD-L1.50Challagundla K.B. Wise P.M. Neviani P. Chava H. Murtadha M. Xu T. Kennedy R. Ivan C. Zhang X. Vannini I. et al.Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy.J. Natl. Cancer Inst. 2015; 107: djv135https://doi.org/10.1093/jnci/djv135Crossref PubMed Scopus (257) Google Scholar, 51Mehta A. Baltimore D. MicroRNAs as regulatory elements in immune system logic.Nat. Rev. Immunol. 2016; 16: 279-294https://doi.org/10.1038/nri.2016.40Crossref PubMed Scopus (436) Google Scholar, 52Xu S. Tao Z. Hai B. Liang H. Shi Y. Wang T. Song W. Chen Y. OuYang J. Chen J. et al.miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint.Nat. Commun. 2016; 7: 11406https://doi.org/10.1038/ncomms11406Crossref PubMed Scopus (186) Google Scholar For instance, miR-424(322) inhibits PD-L1 and CD80 expression, which promotes CD8+ T cells activation and reverses chemoresistance. The suppression of miR-21 in tumor-associated macrophages (TAMs) reprograms TAMs to proinflammatory anti-tumor type, improves CD8+T cell tumor infiltration and inhibits angiogenesis. Our previous study shows that NB cells transfer miR-21 in exosomes to monocytes, which upregulates oncogenic miR-155 expression. Monocytes transfer this miR-155 to NB cells via exosomes and induce chemotherapy resistance.50Challagundla K.B. Wise P.M. Neviani P. Chava H. Murtadha M. Xu T. Kennedy R. Ivan C. Zhang X. Vannini I. et al.Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy.J. Natl. Cancer Inst. 2015; 107: djv135https://doi.org/10.1093/jnci/djv135Crossref PubMed Scopus (257) Google Scholar,53Richard H. Pokhrel A. Chava S. Pathania A. Katta S.S. Challagundla K.B. Exosomes: novel players of therapy resistance in neuroblastoma.Adv. Exp. Med. Biol. 2020; 1277: 75-85https://doi.org/10.1007/978-3-030-50224-9_5Crossref PubMed Scopus (7) Google Scholar,54Gunda V. Pathania A.S. Chava S. Prathipati P. Chaturvedi N.K. Coulter D.W. Pandey M.K. Durden D.L. Challagundla K.B. Amino acids regulate cisplatin insensitivity in neuroblastoma.Cancers (Basel). 2020; 12: E2576https://doi.org/10.3390/cancers12092576Crossref PubMed Scopus (9) Google ScholarSeveral miR-based therapies, for example, tumor-suppressor miRs, miR-34 and miR-122, are in clinical development to treat cancer or other diseases.55Rupaimoole R. Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov. 2017; 16: 203-222https://doi.org/10.1038/nrd.2016.246Crossref PubMed Scopus (2698) Google Scholar Nervous system development during embryonic and pediatric stages requires precise epigenetic regulation of proliferation and differentiation pathways that are critically mediated by non-coding RNAs (ncRNAs). These ncRNAs, primarily miRs, also contribute to several tumor suppressive and oncogenic pathways within the tumor microenvironment. However, how miRs influence T and NK cell function in NB remains poorly understood. In this study, we found that" @default.
- W4220736375 created "2022-04-03" @default.
- W4220736375 creator A5001658268 @default.
- W4220736375 creator A5016509877 @default.
- W4220736375 creator A5019692078 @default.
- W4220736375 creator A5032514627 @default.
- W4220736375 creator A5059650604 @default.
- W4220736375 creator A5073488481 @default.
- W4220736375 creator A5074091078 @default.
- W4220736375 creator A5077326038 @default.
- W4220736375 creator A5087616711 @default.
- W4220736375 creator A5089351883 @default.
- W4220736375 date "2022-06-01" @default.
- W4220736375 modified "2023-10-18" @default.
- W4220736375 title "miR-15a and miR-15b modulate natural killer and CD8+T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma" @default.
- W4220736375 cites W1484057906 @default.
- W4220736375 cites W1755371994 @default.
- W4220736375 cites W1853758218 @default.
- W4220736375 cites W1975197349 @default.
- W4220736375 cites W1977740621 @default.
- W4220736375 cites W1978161821 @default.
- W4220736375 cites W1983542744 @default.
- W4220736375 cites W1986226837 @default.
- W4220736375 cites W1986588536 @default.
- W4220736375 cites W1996101336 @default.
- W4220736375 cites W2002387731 @default.
- W4220736375 cites W2022069273 @default.
- W4220736375 cites W2032354217 @default.
- W4220736375 cites W2037761545 @default.
- W4220736375 cites W2039638023 @default.
- W4220736375 cites W2041793749 @default.
- W4220736375 cites W2046109186 @default.
- W4220736375 cites W2062500929 @default.
- W4220736375 cites W2062956416 @default.
- W4220736375 cites W2075736621 @default.
- W4220736375 cites W2079130077 @default.
- W4220736375 cites W2080162017 @default.
- W4220736375 cites W2086564940 @default.
- W4220736375 cites W2092921437 @default.
- W4220736375 cites W2095849686 @default.
- W4220736375 cites W2096398040 @default.
- W4220736375 cites W2098282574 @default.
- W4220736375 cites W2103695091 @default.
- W4220736375 cites W2107277218 @default.
- W4220736375 cites W2107555512 @default.
- W4220736375 cites W2108318095 @default.
- W4220736375 cites W2109155259 @default.
- W4220736375 cites W2110788947 @default.
- W4220736375 cites W2118071133 @default.
- W4220736375 cites W2119146367 @default.
- W4220736375 cites W2130465135 @default.
- W4220736375 cites W2136859769 @default.
- W4220736375 cites W2137224229 @default.
- W4220736375 cites W2140413450 @default.
- W4220736375 cites W2144999788 @default.
- W4220736375 cites W2147575945 @default.
- W4220736375 cites W2158310959 @default.
- W4220736375 cites W2158514490 @default.
- W4220736375 cites W2170883762 @default.
- W4220736375 cites W2177971463 @default.
- W4220736375 cites W2192080449 @default.
- W4220736375 cites W2274764049 @default.
- W4220736375 cites W2319962899 @default.
- W4220736375 cites W2325707043 @default.
- W4220736375 cites W2327522594 @default.
- W4220736375 cites W2343186061 @default.
- W4220736375 cites W2345664901 @default.
- W4220736375 cites W2406250479 @default.
- W4220736375 cites W2473839227 @default.
- W4220736375 cites W2513841008 @default.
- W4220736375 cites W2582936091 @default.
- W4220736375 cites W2588025094 @default.
- W4220736375 cites W2595182131 @default.
- W4220736375 cites W2608700009 @default.
- W4220736375 cites W2612431515 @default.
- W4220736375 cites W2620241325 @default.
- W4220736375 cites W2729833834 @default.
- W4220736375 cites W2736768705 @default.
- W4220736375 cites W2743337863 @default.
- W4220736375 cites W2766369880 @default.
- W4220736375 cites W2770700940 @default.
- W4220736375 cites W2795419764 @default.
- W4220736375 cites W2803508781 @default.
- W4220736375 cites W2804600261 @default.
- W4220736375 cites W2809092757 @default.
- W4220736375 cites W2887249435 @default.
- W4220736375 cites W2889489530 @default.
- W4220736375 cites W2890056446 @default.
- W4220736375 cites W2897627780 @default.
- W4220736375 cites W2898796425 @default.
- W4220736375 cites W2902229746 @default.
- W4220736375 cites W2904070003 @default.
- W4220736375 cites W2906066358 @default.
- W4220736375 cites W2914396734 @default.
- W4220736375 cites W2916287599 @default.
- W4220736375 cites W2949020864 @default.
- W4220736375 cites W2968345006 @default.
- W4220736375 cites W2972212968 @default.