Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220738523> ?p ?o ?g. }
- W4220738523 endingPage "3385" @default.
- W4220738523 startingPage "3341" @default.
- W4220738523 abstract "The superior multi-functional properties of polymer composites have made them an ideal choice for aerospace, automobile, marine, civil, and many other technologically demanding industries. The increasing demand of these composites calls for an extensive investigation of their physical, chemical and mechanical behavior under different exposure conditions. Machine learning (ML) has been recognized as a powerful predictive tool for data-driven multi-physical modeling, leading to unprecedented insights and exploration of the system properties beyond the capability of traditional computational and experimental analyses. Here we aim to abridge the findings of the large volume of relevant literature and highlight the broad spectrum potential of ML in applications like prediction, optimization, feature identification, uncertainty quantification, reliability and sensitivity analysis along with the framework of different ML algorithms concerning polymer composites. Challenges like the curse of dimensionality, overfitting, noise and mixed variable problems are discussed, including the latest advancements in ML that have the potential to be integrated in the field of polymer composites. Based on the extensive literature survey, a few recommendations on the exploitation of various ML algorithms for addressing different critical problems concerning polymer composites are provided along with insightful perspectives on the potential directions of future research." @default.
- W4220738523 created "2022-04-03" @default.
- W4220738523 creator A5000117081 @default.
- W4220738523 creator A5023258012 @default.
- W4220738523 creator A5034843355 @default.
- W4220738523 creator A5056648962 @default.
- W4220738523 creator A5069510331 @default.
- W4220738523 date "2022-01-31" @default.
- W4220738523 modified "2023-10-10" @default.
- W4220738523 title "Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design" @default.
- W4220738523 cites W1015620817 @default.
- W4220738523 cites W1502922572 @default.
- W4220738523 cites W1528439235 @default.
- W4220738523 cites W1608549042 @default.
- W4220738523 cites W1612748316 @default.
- W4220738523 cites W1677182931 @default.
- W4220738523 cites W188792283 @default.
- W4220738523 cites W1903533072 @default.
- W4220738523 cites W1909207154 @default.
- W4220738523 cites W192244400 @default.
- W4220738523 cites W1964552793 @default.
- W4220738523 cites W1969384704 @default.
- W4220738523 cites W1970948956 @default.
- W4220738523 cites W1973048907 @default.
- W4220738523 cites W1973334855 @default.
- W4220738523 cites W1973877188 @default.
- W4220738523 cites W1974600657 @default.
- W4220738523 cites W1976070817 @default.
- W4220738523 cites W1976594176 @default.
- W4220738523 cites W1977339921 @default.
- W4220738523 cites W1977715424 @default.
- W4220738523 cites W1980123447 @default.
- W4220738523 cites W1981976602 @default.
- W4220738523 cites W1983089897 @default.
- W4220738523 cites W1984238633 @default.
- W4220738523 cites W1985233460 @default.
- W4220738523 cites W1986194572 @default.
- W4220738523 cites W1987885400 @default.
- W4220738523 cites W1988026421 @default.
- W4220738523 cites W1989209093 @default.
- W4220738523 cites W1991023460 @default.
- W4220738523 cites W1992767551 @default.
- W4220738523 cites W1993774732 @default.
- W4220738523 cites W1994005439 @default.
- W4220738523 cites W1995134295 @default.
- W4220738523 cites W1996593427 @default.
- W4220738523 cites W1996817959 @default.
- W4220738523 cites W1998055383 @default.
- W4220738523 cites W1999785511 @default.
- W4220738523 cites W2001356644 @default.
- W4220738523 cites W2001842014 @default.
- W4220738523 cites W2002673896 @default.
- W4220738523 cites W2003480796 @default.
- W4220738523 cites W2003657827 @default.
- W4220738523 cites W2006480995 @default.
- W4220738523 cites W2006560229 @default.
- W4220738523 cites W2006772343 @default.
- W4220738523 cites W2007057213 @default.
- W4220738523 cites W2007965522 @default.
- W4220738523 cites W2008947716 @default.
- W4220738523 cites W2012118327 @default.
- W4220738523 cites W2012386622 @default.
- W4220738523 cites W2013640190 @default.
- W4220738523 cites W2014220254 @default.
- W4220738523 cites W2015245929 @default.
- W4220738523 cites W2016962366 @default.
- W4220738523 cites W2017568564 @default.
- W4220738523 cites W2017761002 @default.
- W4220738523 cites W2019557602 @default.
- W4220738523 cites W2020120943 @default.
- W4220738523 cites W2020322798 @default.
- W4220738523 cites W2021181666 @default.
- W4220738523 cites W2026637575 @default.
- W4220738523 cites W2030132613 @default.
- W4220738523 cites W2030553727 @default.
- W4220738523 cites W2030855919 @default.
- W4220738523 cites W2033507757 @default.
- W4220738523 cites W2033753530 @default.
- W4220738523 cites W2035134507 @default.
- W4220738523 cites W2036576956 @default.
- W4220738523 cites W2036713095 @default.
- W4220738523 cites W2037009596 @default.
- W4220738523 cites W2037925698 @default.
- W4220738523 cites W2040268851 @default.
- W4220738523 cites W2040884411 @default.
- W4220738523 cites W2041317903 @default.
- W4220738523 cites W2044120916 @default.
- W4220738523 cites W2045996350 @default.
- W4220738523 cites W2046598747 @default.
- W4220738523 cites W2048405869 @default.
- W4220738523 cites W2049736842 @default.
- W4220738523 cites W2049871528 @default.
- W4220738523 cites W2057135546 @default.
- W4220738523 cites W2057294075 @default.
- W4220738523 cites W2059474375 @default.
- W4220738523 cites W2060176831 @default.
- W4220738523 cites W2060501580 @default.
- W4220738523 cites W2061933243 @default.