Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220739733> ?p ?o ?g. }
- W4220739733 endingPage "65" @default.
- W4220739733 startingPage "65" @default.
- W4220739733 abstract "Ultrasound imaging of the lung has played an important role in managing patients with COVID-19-associated pneumonia and acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, lung ultrasound (LUS) or point-of-care ultrasound (POCUS) has been a popular diagnostic tool due to its unique imaging capability and logistical advantages over chest X-ray and CT. Pneumonia/ARDS is associated with the sonographic appearances of pleural line irregularities and B-line artefacts, which are caused by interstitial thickening and inflammation, and increase in number with severity. Artificial intelligence (AI), particularly machine learning, is increasingly used as a critical tool that assists clinicians in LUS image reading and COVID-19 decision making. We conducted a systematic review from academic databases (PubMed and Google Scholar) and preprints on arXiv or TechRxiv of the state-of-the-art machine learning technologies for LUS images in COVID-19 diagnosis. Openly accessible LUS datasets are listed. Various machine learning architectures have been employed to evaluate LUS and showed high performance. This paper will summarize the current development of AI for COVID-19 management and the outlook for emerging trends of combining AI-based LUS with robotics, telehealth, and other techniques." @default.
- W4220739733 created "2022-04-03" @default.
- W4220739733 creator A5008483780 @default.
- W4220739733 creator A5009731683 @default.
- W4220739733 creator A5013196991 @default.
- W4220739733 creator A5030054597 @default.
- W4220739733 creator A5032192226 @default.
- W4220739733 creator A5047892976 @default.
- W4220739733 creator A5074875452 @default.
- W4220739733 creator A5080256711 @default.
- W4220739733 creator A5088652341 @default.
- W4220739733 date "2022-03-05" @default.
- W4220739733 modified "2023-10-05" @default.
- W4220739733 title "Review of Machine Learning in Lung Ultrasound in COVID-19 Pandemic" @default.
- W4220739733 cites W1926661321 @default.
- W4220739733 cites W2006849338 @default.
- W4220739733 cites W2060878354 @default.
- W4220739733 cites W2084680449 @default.
- W4220739733 cites W2089368472 @default.
- W4220739733 cites W2122056661 @default.
- W4220739733 cites W2126209705 @default.
- W4220739733 cites W2161177864 @default.
- W4220739733 cites W2406797515 @default.
- W4220739733 cites W2547451222 @default.
- W4220739733 cites W2623976688 @default.
- W4220739733 cites W2910831172 @default.
- W4220739733 cites W2969265612 @default.
- W4220739733 cites W3001118548 @default.
- W4220739733 cites W3003668884 @default.
- W4220739733 cites W3011035774 @default.
- W4220739733 cites W3011588331 @default.
- W4220739733 cites W3012491192 @default.
- W4220739733 cites W3012698759 @default.
- W4220739733 cites W3012908596 @default.
- W4220739733 cites W3014524604 @default.
- W4220739733 cites W3014591259 @default.
- W4220739733 cites W3014967367 @default.
- W4220739733 cites W3015453652 @default.
- W4220739733 cites W3016185001 @default.
- W4220739733 cites W3016786467 @default.
- W4220739733 cites W3018327657 @default.
- W4220739733 cites W3020019825 @default.
- W4220739733 cites W3021831660 @default.
- W4220739733 cites W3022532771 @default.
- W4220739733 cites W3022592783 @default.
- W4220739733 cites W3022676041 @default.
- W4220739733 cites W3023622151 @default.
- W4220739733 cites W3025576489 @default.
- W4220739733 cites W3025953580 @default.
- W4220739733 cites W3031249227 @default.
- W4220739733 cites W3033569750 @default.
- W4220739733 cites W3033875949 @default.
- W4220739733 cites W3034312608 @default.
- W4220739733 cites W3034430816 @default.
- W4220739733 cites W3035579407 @default.
- W4220739733 cites W3036747255 @default.
- W4220739733 cites W3037233011 @default.
- W4220739733 cites W3037278201 @default.
- W4220739733 cites W3039010779 @default.
- W4220739733 cites W3039883473 @default.
- W4220739733 cites W3040423685 @default.
- W4220739733 cites W3043686005 @default.
- W4220739733 cites W3044527230 @default.
- W4220739733 cites W3045712631 @default.
- W4220739733 cites W3045825694 @default.
- W4220739733 cites W3048595983 @default.
- W4220739733 cites W3049131298 @default.
- W4220739733 cites W3080186365 @default.
- W4220739733 cites W3081098622 @default.
- W4220739733 cites W3081274441 @default.
- W4220739733 cites W3083198700 @default.
- W4220739733 cites W3086113400 @default.
- W4220739733 cites W3086200677 @default.
- W4220739733 cites W3087700450 @default.
- W4220739733 cites W3089899212 @default.
- W4220739733 cites W3105081694 @default.
- W4220739733 cites W3108104323 @default.
- W4220739733 cites W3112362785 @default.
- W4220739733 cites W3112906655 @default.
- W4220739733 cites W3113473864 @default.
- W4220739733 cites W3122877585 @default.
- W4220739733 cites W3122950889 @default.
- W4220739733 cites W3127755597 @default.
- W4220739733 cites W3130844452 @default.
- W4220739733 cites W3132380572 @default.
- W4220739733 cites W3133600711 @default.
- W4220739733 cites W3134286464 @default.
- W4220739733 cites W3135728647 @default.
- W4220739733 cites W3138972185 @default.
- W4220739733 cites W3139460796 @default.
- W4220739733 cites W3155156799 @default.
- W4220739733 cites W3156289484 @default.
- W4220739733 cites W3157026788 @default.
- W4220739733 cites W3164214265 @default.
- W4220739733 cites W3165097438 @default.
- W4220739733 cites W3168071167 @default.
- W4220739733 cites W3168834895 @default.
- W4220739733 cites W3182292856 @default.