Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220744462> ?p ?o ?g. }
- W4220744462 endingPage "05" @default.
- W4220744462 startingPage "PD11" @default.
- W4220744462 abstract "Abstract Background: Breast ultrasound identifies additional carcinomas not detected in mammography, but has a higher rate of false-positive findings which result in more unnecessary breast biopsies. Shear-Wave Elastography (SWE), an ultrasound technique used to quantify the stiffness of a lesion, showed promising results to improve the diagnostic performance of B-mode breast ultrasound but also to miss some cancers. As the stiffness of a lesion is found to be influenced by individual patient characteristics, incorporation of lesion stiffness in more individualized assessments may be key to the problem of reducing unnecessary breast biopsies without impairing the breast cancer detection rate. Thus, in this study, we evaluated whether an intelligent algorithm incorporating traditional SWE values as well as other patient and clinical variables (hereafter “intelligent SWE”) could reduce the number of unnecessary breast biopsies without impairing the breast cancer detection rate compared to traditional SWE and B-mode breast ultrasound for patients with suspicious breast lesions. Methods: We trained, tested, and validated machine learning algorithms using patient, clinical, ultrasound, and SWE information to classify breast masses. We used international, multicenter data from 857 women with BI-RADS 4 breast masses at 12 study sites in 7 countries. Patients underwent B-mode breast ultrasound, SWE, and subsequent histopathologic evaluation. 10-fold cross-validation was used to train and test the algorithms on data from 11 of the 12 sites which were further validated using the additional site’s data. The results of B-mode breast ultrasound, traditional SWE, and intelligent SWE were compared to the gold standard of histopathologic evaluation. We calculated sensitivity, specificity, and AUROC and used McNemar tests to test for significant differences in diagnostic performance. Results: The mean age was 49.5 years (SD 16.3) and 42.2% breast masses (n=362 of 857) were found to be malignant as confirmed by histopathology. In the external validation set (n=285), traditional SWE showed a significantly higher diagnostic performance compared to B-mode breast ultrasound (P < 0.001), whereas intelligent SWE outperformed both B-mode breast ultrasound and traditional SWE (P < 0.001). The neural network algorithm showed a significantly higher diagnostic performance compared to the Logistic Regression with Elastic Net Penalty (P = 0.004). The neural network algorithm achieved a sensitivity of 100% (95% CI 97.1 to 100%, 126 of 126) and a specificity of 50.3% (95% CI 42.3 to 58.3%, 80 of 159); the number of unnecessary biopsies were reduced by 50.3% (79 vs. 159) without missing any cancer compared to B-mode breast ultrasound. Model-agnostic variable importance plots to provide insights into the model predictions showed that the three most important variables for intelligent SWE were patient age followed by Shear-Wave velocity and orientation of the lesion (parallel vs. not parallel) in B-mode ultrasound. Conclusion: This is the first evidence which suggests that the majority of false-positive breast biopsies could be safely avoided by using intelligent SWE without impairing breast cancer detection rates. These results may be helpful in their ability to reduce treatment burden for patients, providers, and healthcare systems. Trial registration: NCT02638935. Funding: Siemens Medical Solutions USA, Inc Diagnostic Performance ComparisonB-mode Breast UltrasoundTraditional Shear-Wave ElastographyIntelligent Shear-Wave Elastography – Logistic Regression with Elastic Net PenaltyIntelligent Shear-Wave Elastography – neural networkAUROC – value (95% CI)–0.84 (0.79-0.89)0.93 (0.90-0.95)0.93 (0.90-0.96)Sensitivity – % (95% CI); no.100% (97.1-100%); 126 of 12697.6% (93.2-99.5%); 123 of 126100% (97.1-100%); 126 of 126100% (97.1-100%); 126 of 126Specificity – % (95% CI); no.0% (0.0-2.3%); 0 of 15923.9% (17.5-31.3%); 38 of 15936.5% (29.0-44.5%); 58 of 15950.3% (42.3-58.3%); 80 of 159Negative predictive value – % (95% CI); no.–92.7% (80.1-98.5%); 38 of 41100% (93.8-100%); 58 of 58100% (95.5-100%); 80 of 80Positive predictive value – % (95% CI); no.44.2% (38.4-50.2); 126 of 28550.4% (44.0-56.8%); 123 of 24455.5% (48.8-62.1%); 126 of 22761.5% (54.4-68.2%); 126 of 205 Citation Format: André Pfob, Chris Sidey-Gibbons, Richard G. Barr, Volker Duda, Zaher Alwafai, Corinne Balleyguier, Dirk-André Clevert, Sarah Fastner, Christina Gomez, Manuela Goncalo, Ines Gruber, Markus Hahn, André Hennigs, Chi Ho, Panagiotis Kapetas, Sheng-Chieh Lu, Juliane Nees, Ralf Ohlinger, Fabian Riedel, Matthieu Rutten, Benedikt Schaefgen, Anne Stieber, Riku Togawa, Mitsuhiro Tozaki, Sebastian Wojcinski, Cai Xu, Geraldine Rauch, Joerg Heil, Michael Golatta. Intelligent shear-wave elastography to reduce unnecessary biopsies in breast cancer diagnosis (INSPiRED 002): An international, multicenter analysis [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr PD11-05." @default.
- W4220744462 created "2022-04-03" @default.
- W4220744462 creator A5001251085 @default.
- W4220744462 creator A5007503847 @default.
- W4220744462 creator A5015016922 @default.
- W4220744462 creator A5015496188 @default.
- W4220744462 creator A5015864465 @default.
- W4220744462 creator A5016427640 @default.
- W4220744462 creator A5019687855 @default.
- W4220744462 creator A5023210803 @default.
- W4220744462 creator A5027935637 @default.
- W4220744462 creator A5036815525 @default.
- W4220744462 creator A5037609806 @default.
- W4220744462 creator A5038685423 @default.
- W4220744462 creator A5043412893 @default.
- W4220744462 creator A5044362607 @default.
- W4220744462 creator A5045652493 @default.
- W4220744462 creator A5047800419 @default.
- W4220744462 creator A5050333038 @default.
- W4220744462 creator A5050805795 @default.
- W4220744462 creator A5067246293 @default.
- W4220744462 creator A5069283922 @default.
- W4220744462 creator A5071559843 @default.
- W4220744462 creator A5075656855 @default.
- W4220744462 creator A5077251158 @default.
- W4220744462 creator A5079710426 @default.
- W4220744462 creator A5081505570 @default.
- W4220744462 creator A5085263341 @default.
- W4220744462 creator A5085380597 @default.
- W4220744462 creator A5085385776 @default.
- W4220744462 creator A5089700861 @default.
- W4220744462 date "2022-02-15" @default.
- W4220744462 modified "2023-10-11" @default.
- W4220744462 title "Abstract PD11-05: Intelligent shear-wave elastography to reduce unnecessary biopsies in breast cancer diagnosis (INSPiRED 002): An international, multicenter analysis" @default.
- W4220744462 doi "https://doi.org/10.1158/1538-7445.sabcs21-pd11-05" @default.
- W4220744462 hasPublicationYear "2022" @default.
- W4220744462 type Work @default.
- W4220744462 citedByCount "0" @default.
- W4220744462 crossrefType "journal-article" @default.
- W4220744462 hasAuthorship W4220744462A5001251085 @default.
- W4220744462 hasAuthorship W4220744462A5007503847 @default.
- W4220744462 hasAuthorship W4220744462A5015016922 @default.
- W4220744462 hasAuthorship W4220744462A5015496188 @default.
- W4220744462 hasAuthorship W4220744462A5015864465 @default.
- W4220744462 hasAuthorship W4220744462A5016427640 @default.
- W4220744462 hasAuthorship W4220744462A5019687855 @default.
- W4220744462 hasAuthorship W4220744462A5023210803 @default.
- W4220744462 hasAuthorship W4220744462A5027935637 @default.
- W4220744462 hasAuthorship W4220744462A5036815525 @default.
- W4220744462 hasAuthorship W4220744462A5037609806 @default.
- W4220744462 hasAuthorship W4220744462A5038685423 @default.
- W4220744462 hasAuthorship W4220744462A5043412893 @default.
- W4220744462 hasAuthorship W4220744462A5044362607 @default.
- W4220744462 hasAuthorship W4220744462A5045652493 @default.
- W4220744462 hasAuthorship W4220744462A5047800419 @default.
- W4220744462 hasAuthorship W4220744462A5050333038 @default.
- W4220744462 hasAuthorship W4220744462A5050805795 @default.
- W4220744462 hasAuthorship W4220744462A5067246293 @default.
- W4220744462 hasAuthorship W4220744462A5069283922 @default.
- W4220744462 hasAuthorship W4220744462A5071559843 @default.
- W4220744462 hasAuthorship W4220744462A5075656855 @default.
- W4220744462 hasAuthorship W4220744462A5077251158 @default.
- W4220744462 hasAuthorship W4220744462A5079710426 @default.
- W4220744462 hasAuthorship W4220744462A5081505570 @default.
- W4220744462 hasAuthorship W4220744462A5085263341 @default.
- W4220744462 hasAuthorship W4220744462A5085380597 @default.
- W4220744462 hasAuthorship W4220744462A5085385776 @default.
- W4220744462 hasAuthorship W4220744462A5089700861 @default.
- W4220744462 hasConcept C121608353 @default.
- W4220744462 hasConcept C126322002 @default.
- W4220744462 hasConcept C126838900 @default.
- W4220744462 hasConcept C143753070 @default.
- W4220744462 hasConcept C2777423100 @default.
- W4220744462 hasConcept C2777690781 @default.
- W4220744462 hasConcept C2780472235 @default.
- W4220744462 hasConcept C530470458 @default.
- W4220744462 hasConcept C71924100 @default.
- W4220744462 hasConceptScore W4220744462C121608353 @default.
- W4220744462 hasConceptScore W4220744462C126322002 @default.
- W4220744462 hasConceptScore W4220744462C126838900 @default.
- W4220744462 hasConceptScore W4220744462C143753070 @default.
- W4220744462 hasConceptScore W4220744462C2777423100 @default.
- W4220744462 hasConceptScore W4220744462C2777690781 @default.
- W4220744462 hasConceptScore W4220744462C2780472235 @default.
- W4220744462 hasConceptScore W4220744462C530470458 @default.
- W4220744462 hasConceptScore W4220744462C71924100 @default.
- W4220744462 hasIssue "4_Supplement" @default.
- W4220744462 hasLocation W42207444621 @default.
- W4220744462 hasOpenAccess W4220744462 @default.
- W4220744462 hasPrimaryLocation W42207444621 @default.
- W4220744462 hasRelatedWork W2145869724 @default.
- W4220744462 hasRelatedWork W2327763675 @default.
- W4220744462 hasRelatedWork W2364180410 @default.
- W4220744462 hasRelatedWork W2478167448 @default.
- W4220744462 hasRelatedWork W2489695924 @default.
- W4220744462 hasRelatedWork W2618954822 @default.
- W4220744462 hasRelatedWork W3020588946 @default.
- W4220744462 hasRelatedWork W3108039862 @default.