Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220746095> ?p ?o ?g. }
- W4220746095 abstract "Abstract The present research aims to build a unique ensemble model based on a high-resolution groundwater potentiality model (GPM) by merging the random forest (RF) meta classifier-based stacking ensemble machine learning method with high-resolution groundwater conditioning factors in the Bisha watershed, Saudi Arabia. Using high-resolution satellite images and other secondary sources, twenty-one parameters were derived in this study. SVM, ANN, and LR meta-classifiers were used to create the new stacking ensemble machine learning method. RF meta classifiers were used to create the new stacking ensemble machine learning algorithm. Each of these three models was compared to the ensemble model separately. The GPMs were then confirmed using ROC curves, such as the empirical ROC and the binormal ROC, both parametric and non-parametric. Sensitivity analyses of GPM parameters were carried out using an RF-based approach. Predictions were made using six hybrid algorithms and a new hybrid model for the very high (1835–2149 km 2 ) and high groundwater potential (3335–4585 km 2 ) regions. The stacking model (ROCe-AUC: 0.856; ROCb-AUC: 0.921) beat other models based on ROC's area under the curve (AUC). GPM sensitivity study indicated that NDMI, NDVI, slope, distance to water bodies, and flow accumulation were the most sensitive parameters. This work will aid in improving the effectiveness of GPMs in developing sustainable groundwater management plans by utilizing DEM-derived parameters." @default.
- W4220746095 created "2022-04-03" @default.
- W4220746095 creator A5016283348 @default.
- W4220746095 creator A5048799342 @default.
- W4220746095 creator A5064098467 @default.
- W4220746095 date "2022-03-21" @default.
- W4220746095 modified "2023-10-13" @default.
- W4220746095 title "Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed, Saudi Arabia" @default.
- W4220746095 cites W1145321339 @default.
- W4220746095 cites W1580409454 @default.
- W4220746095 cites W1685219623 @default.
- W4220746095 cites W1776911451 @default.
- W4220746095 cites W1805752680 @default.
- W4220746095 cites W183366287 @default.
- W4220746095 cites W1979486410 @default.
- W4220746095 cites W1985271179 @default.
- W4220746095 cites W1986198891 @default.
- W4220746095 cites W2004076523 @default.
- W4220746095 cites W2005309788 @default.
- W4220746095 cites W2005348436 @default.
- W4220746095 cites W2021168884 @default.
- W4220746095 cites W2037630084 @default.
- W4220746095 cites W2037768558 @default.
- W4220746095 cites W2042315239 @default.
- W4220746095 cites W2046064175 @default.
- W4220746095 cites W2051048470 @default.
- W4220746095 cites W2057388082 @default.
- W4220746095 cites W2064319214 @default.
- W4220746095 cites W2071068479 @default.
- W4220746095 cites W2071944042 @default.
- W4220746095 cites W2093650457 @default.
- W4220746095 cites W2121394390 @default.
- W4220746095 cites W2205158676 @default.
- W4220746095 cites W2208293910 @default.
- W4220746095 cites W2266000645 @default.
- W4220746095 cites W2287278712 @default.
- W4220746095 cites W2423094380 @default.
- W4220746095 cites W2519746072 @default.
- W4220746095 cites W2578894852 @default.
- W4220746095 cites W2582794771 @default.
- W4220746095 cites W2593192809 @default.
- W4220746095 cites W2602515363 @default.
- W4220746095 cites W2606642786 @default.
- W4220746095 cites W2608566182 @default.
- W4220746095 cites W2624917962 @default.
- W4220746095 cites W2730089161 @default.
- W4220746095 cites W2731040012 @default.
- W4220746095 cites W2792324107 @default.
- W4220746095 cites W2794405349 @default.
- W4220746095 cites W2795393237 @default.
- W4220746095 cites W2797310831 @default.
- W4220746095 cites W2809889051 @default.
- W4220746095 cites W28412257 @default.
- W4220746095 cites W2881940504 @default.
- W4220746095 cites W2886424099 @default.
- W4220746095 cites W2888559749 @default.
- W4220746095 cites W2894082056 @default.
- W4220746095 cites W2895196240 @default.
- W4220746095 cites W2899513074 @default.
- W4220746095 cites W2901271692 @default.
- W4220746095 cites W2904803993 @default.
- W4220746095 cites W2905215511 @default.
- W4220746095 cites W2910972630 @default.
- W4220746095 cites W2914739587 @default.
- W4220746095 cites W2916157090 @default.
- W4220746095 cites W2922091413 @default.
- W4220746095 cites W2937103134 @default.
- W4220746095 cites W2943903674 @default.
- W4220746095 cites W2946648277 @default.
- W4220746095 cites W2954493425 @default.
- W4220746095 cites W2964430035 @default.
- W4220746095 cites W2967801159 @default.
- W4220746095 cites W2969340306 @default.
- W4220746095 cites W2970885557 @default.
- W4220746095 cites W2975989422 @default.
- W4220746095 cites W2976772718 @default.
- W4220746095 cites W2990483797 @default.
- W4220746095 cites W2991121503 @default.
- W4220746095 cites W2991136366 @default.
- W4220746095 cites W2992004602 @default.
- W4220746095 cites W2997624500 @default.
- W4220746095 cites W2998999740 @default.
- W4220746095 cites W3003585967 @default.
- W4220746095 cites W3005761411 @default.
- W4220746095 cites W3006899973 @default.
- W4220746095 cites W3007300585 @default.
- W4220746095 cites W3012361440 @default.
- W4220746095 cites W3014286109 @default.
- W4220746095 cites W3014372673 @default.
- W4220746095 cites W3015180749 @default.
- W4220746095 cites W3040600597 @default.
- W4220746095 cites W3068777119 @default.
- W4220746095 cites W3080371574 @default.
- W4220746095 cites W3086946079 @default.
- W4220746095 cites W3091027894 @default.
- W4220746095 cites W3091920975 @default.
- W4220746095 cites W3103312084 @default.
- W4220746095 cites W3120290421 @default.
- W4220746095 cites W3122521293 @default.
- W4220746095 cites W3128091358 @default.