Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220749947> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4220749947 abstract "<p>The level and type of saturation of the petroleum reservoirs is an essential parameter in reserve estimation because it determines the effective volume of the hydrocarbon that is being stored. At the same time, rock wettability influences the displacement of oil by water from oil-producing reservoirs, especially during water-flooding processes. Low-field Nuclear Magnetic Resonance (NMR) spectrometry evaluates the pore size distribution and has proved a powerful tool in determining the type of saturation and assessing the solid-fluid affinity (Katika et al., 2017).</p><p>However, assessing the pore-fluid distribution of rocks with complex mineral composition at laboratory conditions, such as chalk and argillaceous sandstones, that are commonly found in the North Sea oil reservoirs, often requires further investigation. NMR data are combined with a visual inspection or with traditional techniques, such as MICP, to evaluate the microtexture of rocks (Katika et al., 2018, Fa&#255;-Gomord et al., 2016). Considering that laboratory low-field NMR can be used as a guide to interpreting logging data, improving the evaluation of lab measurements has a profound influence on the field.</p><p>Deep Learning (DL), as an artificial intelligence technique utilizing neural networks, has the potential to transform low-field NMR into a more efficient and powerful tool in reservoir characterization.</p><p>The various peaks in NMR T<sub>2</sub> relaxation spectra differ in rocks with multiple types and levels of saturation, rock-fluid affinity, or pore size distribution. In the present study, we aim to improve the interpretation of the T<sub>2</sub> spectra and automate peak picking. Using laboratory data for reservoir rocks from the literature (Katika et al., 2017), a Deep Neural Network (DNN) was trained to optimize the internal network parameters and successfully evaluate the type of peaks existing in T<sub>2</sub> spectra. The successful evaluation is confirmed with visual inspection and correlated with geophysical data derived from the same literature.</p><p>References</p><p>Katika, K., Saidian, M., Prasad, M. and Fabricius, I.L., 2017. Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T1/T2 Ratio. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 58(02), pp.126-140. SPWLA-2017-v58n2a4</p><p>Fa&#255;-Gomord, O., Soete, J., Katika, K., Galaup, S., Caline, B., Descamps, F., Lasseur, E., Fabricius, I.L., Sa&#239;ag, J., Swennen, R. and Vandycke, S., 2016. New insight into the microtexture of chalks from NMR analysis. Marine and Petroleum Geology, 75, pp.252-271. https://doi.org/10.1016/j.marpetgeo.2016.04.019</p><p>Katika, K., Alam, M.M., Alexeev, A., Chakravarty, K.H., Fosb&#248;l, P.L., Revil, A., Stenby, E., Xiarchos, I., Yousefi, A. and Fabricius, I.L., 2018. Elasticity and electrical resistivity of chalk and greensand during water flooding with selective ions. Journal of Petroleum Science and Engineering, 161, pp.204-218. https://doi.org/10.1016/j.petrol.2017.11.045</p>" @default.
- W4220749947 created "2022-04-03" @default.
- W4220749947 creator A5032898795 @default.
- W4220749947 creator A5049292102 @default.
- W4220749947 date "2022-03-27" @default.
- W4220749947 modified "2023-10-16" @default.
- W4220749947 title "Machine Learning for low-field NMR to improve pore fluid characterization " @default.
- W4220749947 doi "https://doi.org/10.5194/egusphere-egu22-2558" @default.
- W4220749947 hasPublicationYear "2022" @default.
- W4220749947 type Work @default.
- W4220749947 citedByCount "0" @default.
- W4220749947 crossrefType "posted-content" @default.
- W4220749947 hasAuthorship W4220749947A5032898795 @default.
- W4220749947 hasAuthorship W4220749947A5049292102 @default.
- W4220749947 hasConcept C113196181 @default.
- W4220749947 hasConcept C114614502 @default.
- W4220749947 hasConcept C127313418 @default.
- W4220749947 hasConcept C127413603 @default.
- W4220749947 hasConcept C134514944 @default.
- W4220749947 hasConcept C171250308 @default.
- W4220749947 hasConcept C185592680 @default.
- W4220749947 hasConcept C192562407 @default.
- W4220749947 hasConcept C2776364302 @default.
- W4220749947 hasConcept C2780841128 @default.
- W4220749947 hasConcept C33923547 @default.
- W4220749947 hasConcept C42360764 @default.
- W4220749947 hasConcept C43617362 @default.
- W4220749947 hasConcept C78762247 @default.
- W4220749947 hasConcept C9930424 @default.
- W4220749947 hasConceptScore W4220749947C113196181 @default.
- W4220749947 hasConceptScore W4220749947C114614502 @default.
- W4220749947 hasConceptScore W4220749947C127313418 @default.
- W4220749947 hasConceptScore W4220749947C127413603 @default.
- W4220749947 hasConceptScore W4220749947C134514944 @default.
- W4220749947 hasConceptScore W4220749947C171250308 @default.
- W4220749947 hasConceptScore W4220749947C185592680 @default.
- W4220749947 hasConceptScore W4220749947C192562407 @default.
- W4220749947 hasConceptScore W4220749947C2776364302 @default.
- W4220749947 hasConceptScore W4220749947C2780841128 @default.
- W4220749947 hasConceptScore W4220749947C33923547 @default.
- W4220749947 hasConceptScore W4220749947C42360764 @default.
- W4220749947 hasConceptScore W4220749947C43617362 @default.
- W4220749947 hasConceptScore W4220749947C78762247 @default.
- W4220749947 hasConceptScore W4220749947C9930424 @default.
- W4220749947 hasLocation W42207499471 @default.
- W4220749947 hasOpenAccess W4220749947 @default.
- W4220749947 hasPrimaryLocation W42207499471 @default.
- W4220749947 hasRelatedWork W1992952762 @default.
- W4220749947 hasRelatedWork W2034218529 @default.
- W4220749947 hasRelatedWork W2065453419 @default.
- W4220749947 hasRelatedWork W2070838791 @default.
- W4220749947 hasRelatedWork W2154029953 @default.
- W4220749947 hasRelatedWork W2355474891 @default.
- W4220749947 hasRelatedWork W2370595384 @default.
- W4220749947 hasRelatedWork W2747513461 @default.
- W4220749947 hasRelatedWork W3080972826 @default.
- W4220749947 hasRelatedWork W4245862425 @default.
- W4220749947 isParatext "false" @default.
- W4220749947 isRetracted "false" @default.
- W4220749947 workType "article" @default.