Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220753136> ?p ?o ?g. }
- W4220753136 endingPage "21" @default.
- W4220753136 startingPage "1" @default.
- W4220753136 abstract "In wireless sensor networks (WSNs), especially in underwater sensor networks, the problem of reporting data to the sink with minimum latency has been widely discussed in many research works. Many studies address using data aggregation to report the same type of data to the sink without data collision in a short period of time. However, due to the rapid development of sensor technology in recent years, a sensor is allowed to have multiple sensing capabilities, that is, it can generate and collect different types of data. Because different types of data have different meanings and required aggregation functions, only the data that belong to the same type are allowed to be aggregated. In addition, due to the interference of the environment or noise, the links in the WSNs are often not bidirectional. This motivates us to study the problem of using minimum latency scheduling to aggregate and report data to the sink without data collision in multiple-data-type WSNs having unidirectional links, which is shown to be NP-hard in the article. The Relative-Collision-Graph-Based Scheduling Algorithm (RCGBSA) is proposed accordingly. Simulations are conducted to demonstrate the performance of the RCGBSA." @default.
- W4220753136 created "2022-04-03" @default.
- W4220753136 creator A5001324845 @default.
- W4220753136 creator A5003943652 @default.
- W4220753136 creator A5005663679 @default.
- W4220753136 creator A5040230347 @default.
- W4220753136 creator A5057999994 @default.
- W4220753136 creator A5082199952 @default.
- W4220753136 date "2022-08-30" @default.
- W4220753136 modified "2023-10-16" @default.
- W4220753136 title "Minimizing Latency for Data Aggregation in Wireless Sensor Networks: An Algorithm Approach" @default.
- W4220753136 cites W1504509750 @default.
- W4220753136 cites W1606343334 @default.
- W4220753136 cites W1965642303 @default.
- W4220753136 cites W1974616671 @default.
- W4220753136 cites W1989401189 @default.
- W4220753136 cites W2007631443 @default.
- W4220753136 cites W2026052907 @default.
- W4220753136 cites W2028681097 @default.
- W4220753136 cites W2037010677 @default.
- W4220753136 cites W2037774950 @default.
- W4220753136 cites W2047460174 @default.
- W4220753136 cites W2059629429 @default.
- W4220753136 cites W2099644548 @default.
- W4220753136 cites W2100504532 @default.
- W4220753136 cites W2103613456 @default.
- W4220753136 cites W2108735570 @default.
- W4220753136 cites W2117202954 @default.
- W4220753136 cites W2120462722 @default.
- W4220753136 cites W2128353214 @default.
- W4220753136 cites W2143712255 @default.
- W4220753136 cites W2147568524 @default.
- W4220753136 cites W2155652863 @default.
- W4220753136 cites W2167308284 @default.
- W4220753136 cites W2289904066 @default.
- W4220753136 cites W2296691395 @default.
- W4220753136 cites W2315395910 @default.
- W4220753136 cites W2328354781 @default.
- W4220753136 cites W2343543015 @default.
- W4220753136 cites W2417994021 @default.
- W4220753136 cites W2429289022 @default.
- W4220753136 cites W2463533298 @default.
- W4220753136 cites W2468468006 @default.
- W4220753136 cites W2519653023 @default.
- W4220753136 cites W2603622875 @default.
- W4220753136 cites W2696880678 @default.
- W4220753136 cites W2756287928 @default.
- W4220753136 cites W2760234120 @default.
- W4220753136 cites W2774993292 @default.
- W4220753136 cites W2784196643 @default.
- W4220753136 cites W2809089099 @default.
- W4220753136 cites W2811495608 @default.
- W4220753136 cites W2887613427 @default.
- W4220753136 cites W2892472137 @default.
- W4220753136 cites W2937615688 @default.
- W4220753136 cites W2945696784 @default.
- W4220753136 cites W2950345016 @default.
- W4220753136 cites W2963700444 @default.
- W4220753136 cites W3003682114 @default.
- W4220753136 cites W3035956835 @default.
- W4220753136 doi "https://doi.org/10.1145/3450350" @default.
- W4220753136 hasPublicationYear "2022" @default.
- W4220753136 type Work @default.
- W4220753136 citedByCount "2" @default.
- W4220753136 countsByYear W42207531362022 @default.
- W4220753136 countsByYear W42207531362023 @default.
- W4220753136 crossrefType "journal-article" @default.
- W4220753136 hasAuthorship W4220753136A5001324845 @default.
- W4220753136 hasAuthorship W4220753136A5003943652 @default.
- W4220753136 hasAuthorship W4220753136A5005663679 @default.
- W4220753136 hasAuthorship W4220753136A5040230347 @default.
- W4220753136 hasAuthorship W4220753136A5057999994 @default.
- W4220753136 hasAuthorship W4220753136A5082199952 @default.
- W4220753136 hasConcept C11413529 @default.
- W4220753136 hasConcept C120314980 @default.
- W4220753136 hasConcept C121704057 @default.
- W4220753136 hasConcept C143050476 @default.
- W4220753136 hasConcept C162324750 @default.
- W4220753136 hasConcept C205649164 @default.
- W4220753136 hasConcept C206729178 @default.
- W4220753136 hasConcept C21547014 @default.
- W4220753136 hasConcept C24590314 @default.
- W4220753136 hasConcept C31258907 @default.
- W4220753136 hasConcept C38652104 @default.
- W4220753136 hasConcept C41008148 @default.
- W4220753136 hasConcept C58640448 @default.
- W4220753136 hasConcept C76155785 @default.
- W4220753136 hasConcept C79403827 @default.
- W4220753136 hasConcept C82578977 @default.
- W4220753136 hasConcept C82876162 @default.
- W4220753136 hasConceptScore W4220753136C11413529 @default.
- W4220753136 hasConceptScore W4220753136C120314980 @default.
- W4220753136 hasConceptScore W4220753136C121704057 @default.
- W4220753136 hasConceptScore W4220753136C143050476 @default.
- W4220753136 hasConceptScore W4220753136C162324750 @default.
- W4220753136 hasConceptScore W4220753136C205649164 @default.
- W4220753136 hasConceptScore W4220753136C206729178 @default.
- W4220753136 hasConceptScore W4220753136C21547014 @default.