Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220758235> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4220758235 endingPage "3104" @default.
- W4220758235 startingPage "3104" @default.
- W4220758235 abstract "Artificial intelligence (AI) has become increasingly popular as a tool to model, identify, optimize, forecast, and control renewable energy systems. This work aimed to evaluate the capability of the artificial neural network (ANN) procedure to model and forecast solar power outputs of photovoltaic power systems (PVPSs) by using meteorological data. For this purpose, based on the literature review, important factors affecting energy generation in a PVPS were selected as inputs, and a recurrent neural network (RNN) architecture was established. After completing the trained network, the RNN capability was assessed to predict the energy output of the PVPS for days not included in the training database. The performance evaluation of the trained RNN revealed a regression value of 0.97774 for test data, whereas the RMSE and the mean actual output power for a sample day were 0.0248 MJ and 0.538 MJ, respectively. In addition to RMSE, an error histogram and regression plots obtained by MATLAB were employed to evaluate the network’s capability, and validation results represented a sufficient prediction accuracy of the trained RNN." @default.
- W4220758235 created "2022-04-03" @default.
- W4220758235 creator A5004840558 @default.
- W4220758235 creator A5007446744 @default.
- W4220758235 creator A5024332180 @default.
- W4220758235 creator A5024451989 @default.
- W4220758235 creator A5045480106 @default.
- W4220758235 creator A5089045822 @default.
- W4220758235 creator A5091913801 @default.
- W4220758235 date "2022-03-07" @default.
- W4220758235 modified "2023-09-30" @default.
- W4220758235 title "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches" @default.
- W4220758235 cites W1977376353 @default.
- W4220758235 cites W2002204410 @default.
- W4220758235 cites W2008820313 @default.
- W4220758235 cites W2028903792 @default.
- W4220758235 cites W2060376868 @default.
- W4220758235 cites W2070826863 @default.
- W4220758235 cites W2276885329 @default.
- W4220758235 cites W2771973508 @default.
- W4220758235 cites W2795242388 @default.
- W4220758235 cites W2897328490 @default.
- W4220758235 cites W2913949647 @default.
- W4220758235 cites W2946596023 @default.
- W4220758235 cites W2974606090 @default.
- W4220758235 cites W2994797293 @default.
- W4220758235 cites W2996375696 @default.
- W4220758235 cites W3020884982 @default.
- W4220758235 cites W3204252812 @default.
- W4220758235 doi "https://doi.org/10.3390/su14053104" @default.
- W4220758235 hasPublicationYear "2022" @default.
- W4220758235 type Work @default.
- W4220758235 citedByCount "3" @default.
- W4220758235 countsByYear W42207582352022 @default.
- W4220758235 crossrefType "journal-article" @default.
- W4220758235 hasAuthorship W4220758235A5004840558 @default.
- W4220758235 hasAuthorship W4220758235A5007446744 @default.
- W4220758235 hasAuthorship W4220758235A5024332180 @default.
- W4220758235 hasAuthorship W4220758235A5024451989 @default.
- W4220758235 hasAuthorship W4220758235A5045480106 @default.
- W4220758235 hasAuthorship W4220758235A5089045822 @default.
- W4220758235 hasAuthorship W4220758235A5091913801 @default.
- W4220758235 hasBestOaLocation W42207582351 @default.
- W4220758235 hasConcept C105795698 @default.
- W4220758235 hasConcept C119599485 @default.
- W4220758235 hasConcept C119857082 @default.
- W4220758235 hasConcept C121332964 @default.
- W4220758235 hasConcept C127413603 @default.
- W4220758235 hasConcept C139945424 @default.
- W4220758235 hasConcept C147168706 @default.
- W4220758235 hasConcept C154945302 @default.
- W4220758235 hasConcept C163258240 @default.
- W4220758235 hasConcept C188573790 @default.
- W4220758235 hasConcept C33923547 @default.
- W4220758235 hasConcept C41008148 @default.
- W4220758235 hasConcept C41291067 @default.
- W4220758235 hasConcept C50644808 @default.
- W4220758235 hasConcept C62520636 @default.
- W4220758235 hasConcept C89227174 @default.
- W4220758235 hasConceptScore W4220758235C105795698 @default.
- W4220758235 hasConceptScore W4220758235C119599485 @default.
- W4220758235 hasConceptScore W4220758235C119857082 @default.
- W4220758235 hasConceptScore W4220758235C121332964 @default.
- W4220758235 hasConceptScore W4220758235C127413603 @default.
- W4220758235 hasConceptScore W4220758235C139945424 @default.
- W4220758235 hasConceptScore W4220758235C147168706 @default.
- W4220758235 hasConceptScore W4220758235C154945302 @default.
- W4220758235 hasConceptScore W4220758235C163258240 @default.
- W4220758235 hasConceptScore W4220758235C188573790 @default.
- W4220758235 hasConceptScore W4220758235C33923547 @default.
- W4220758235 hasConceptScore W4220758235C41008148 @default.
- W4220758235 hasConceptScore W4220758235C41291067 @default.
- W4220758235 hasConceptScore W4220758235C50644808 @default.
- W4220758235 hasConceptScore W4220758235C62520636 @default.
- W4220758235 hasConceptScore W4220758235C89227174 @default.
- W4220758235 hasIssue "5" @default.
- W4220758235 hasLocation W42207582351 @default.
- W4220758235 hasLocation W42207582352 @default.
- W4220758235 hasOpenAccess W4220758235 @default.
- W4220758235 hasPrimaryLocation W42207582351 @default.
- W4220758235 hasRelatedWork W2886255183 @default.
- W4220758235 hasRelatedWork W2902723393 @default.
- W4220758235 hasRelatedWork W2961085424 @default.
- W4220758235 hasRelatedWork W2995227436 @default.
- W4220758235 hasRelatedWork W4281386417 @default.
- W4220758235 hasRelatedWork W4286629047 @default.
- W4220758235 hasRelatedWork W4306321456 @default.
- W4220758235 hasRelatedWork W4306674287 @default.
- W4220758235 hasRelatedWork W4327831767 @default.
- W4220758235 hasRelatedWork W4224009465 @default.
- W4220758235 hasVolume "14" @default.
- W4220758235 isParatext "false" @default.
- W4220758235 isRetracted "false" @default.
- W4220758235 workType "article" @default.