Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220761410> ?p ?o ?g. }
- W4220761410 endingPage "320" @default.
- W4220761410 startingPage "309" @default.
- W4220761410 abstract "Infrared thermal technology plays a vital role in the health condition monitoring of gearbox. In the traditional infrared thermal technology-based methods, Gaussian pyramid is applied as the feature extraction approach, which has disadvantages of noise influence and information missing. Focus on such disadvantages, an improved multi-scale decomposition method combined with convolutional neural network is proposed to extract the fault features of the multi-scale infrared images in this paper. It can enlarge the data length at large scales, and thus reduce the fluctuations of feature values and reserve the fault information. The effectiveness of the proposed method is validated using the experiment infrared data of one industrial gearbox. Results demonstrate that our proposed method has the best performance comparing with five methods." @default.
- W4220761410 created "2022-04-03" @default.
- W4220761410 creator A5002112650 @default.
- W4220761410 creator A5007377222 @default.
- W4220761410 creator A5032305048 @default.
- W4220761410 creator A5041954283 @default.
- W4220761410 date "2022-10-01" @default.
- W4220761410 modified "2023-10-18" @default.
- W4220761410 title "Industrial gearbox fault diagnosis based on multi-scale convolutional neural networks and thermal imaging" @default.
- W4220761410 cites W1918789932 @default.
- W4220761410 cites W2092777731 @default.
- W4220761410 cites W2423124209 @default.
- W4220761410 cites W2555062391 @default.
- W4220761410 cites W2558580397 @default.
- W4220761410 cites W2560533888 @default.
- W4220761410 cites W2581853886 @default.
- W4220761410 cites W2734669076 @default.
- W4220761410 cites W2767234670 @default.
- W4220761410 cites W2791428218 @default.
- W4220761410 cites W2795812085 @default.
- W4220761410 cites W2803509947 @default.
- W4220761410 cites W2890945279 @default.
- W4220761410 cites W2903917280 @default.
- W4220761410 cites W2910029951 @default.
- W4220761410 cites W2920611841 @default.
- W4220761410 cites W2980243565 @default.
- W4220761410 cites W3006387360 @default.
- W4220761410 cites W3010965061 @default.
- W4220761410 cites W3034363820 @default.
- W4220761410 cites W3036512285 @default.
- W4220761410 cites W3043257208 @default.
- W4220761410 cites W3048957103 @default.
- W4220761410 cites W3131671510 @default.
- W4220761410 cites W583652352 @default.
- W4220761410 doi "https://doi.org/10.1016/j.isatra.2022.02.048" @default.
- W4220761410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35305817" @default.
- W4220761410 hasPublicationYear "2022" @default.
- W4220761410 type Work @default.
- W4220761410 citedByCount "11" @default.
- W4220761410 countsByYear W42207614102022 @default.
- W4220761410 countsByYear W42207614102023 @default.
- W4220761410 crossrefType "journal-article" @default.
- W4220761410 hasAuthorship W4220761410A5002112650 @default.
- W4220761410 hasAuthorship W4220761410A5007377222 @default.
- W4220761410 hasAuthorship W4220761410A5032305048 @default.
- W4220761410 hasAuthorship W4220761410A5041954283 @default.
- W4220761410 hasConcept C108583219 @default.
- W4220761410 hasConcept C115961682 @default.
- W4220761410 hasConcept C120665830 @default.
- W4220761410 hasConcept C121332964 @default.
- W4220761410 hasConcept C127313418 @default.
- W4220761410 hasConcept C138885662 @default.
- W4220761410 hasConcept C142575187 @default.
- W4220761410 hasConcept C153180895 @default.
- W4220761410 hasConcept C154945302 @default.
- W4220761410 hasConcept C158355884 @default.
- W4220761410 hasConcept C165205528 @default.
- W4220761410 hasConcept C175551986 @default.
- W4220761410 hasConcept C192209626 @default.
- W4220761410 hasConcept C2524010 @default.
- W4220761410 hasConcept C2776401178 @default.
- W4220761410 hasConcept C2778755073 @default.
- W4220761410 hasConcept C31972630 @default.
- W4220761410 hasConcept C33923547 @default.
- W4220761410 hasConcept C41008148 @default.
- W4220761410 hasConcept C41895202 @default.
- W4220761410 hasConcept C50644808 @default.
- W4220761410 hasConcept C52622490 @default.
- W4220761410 hasConcept C62520636 @default.
- W4220761410 hasConcept C81363708 @default.
- W4220761410 hasConcept C99498987 @default.
- W4220761410 hasConceptScore W4220761410C108583219 @default.
- W4220761410 hasConceptScore W4220761410C115961682 @default.
- W4220761410 hasConceptScore W4220761410C120665830 @default.
- W4220761410 hasConceptScore W4220761410C121332964 @default.
- W4220761410 hasConceptScore W4220761410C127313418 @default.
- W4220761410 hasConceptScore W4220761410C138885662 @default.
- W4220761410 hasConceptScore W4220761410C142575187 @default.
- W4220761410 hasConceptScore W4220761410C153180895 @default.
- W4220761410 hasConceptScore W4220761410C154945302 @default.
- W4220761410 hasConceptScore W4220761410C158355884 @default.
- W4220761410 hasConceptScore W4220761410C165205528 @default.
- W4220761410 hasConceptScore W4220761410C175551986 @default.
- W4220761410 hasConceptScore W4220761410C192209626 @default.
- W4220761410 hasConceptScore W4220761410C2524010 @default.
- W4220761410 hasConceptScore W4220761410C2776401178 @default.
- W4220761410 hasConceptScore W4220761410C2778755073 @default.
- W4220761410 hasConceptScore W4220761410C31972630 @default.
- W4220761410 hasConceptScore W4220761410C33923547 @default.
- W4220761410 hasConceptScore W4220761410C41008148 @default.
- W4220761410 hasConceptScore W4220761410C41895202 @default.
- W4220761410 hasConceptScore W4220761410C50644808 @default.
- W4220761410 hasConceptScore W4220761410C52622490 @default.
- W4220761410 hasConceptScore W4220761410C62520636 @default.
- W4220761410 hasConceptScore W4220761410C81363708 @default.
- W4220761410 hasConceptScore W4220761410C99498987 @default.
- W4220761410 hasFunder F4320321001 @default.
- W4220761410 hasLocation W42207614101 @default.