Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220761790> ?p ?o ?g. }
- W4220761790 endingPage "110711" @default.
- W4220761790 startingPage "110711" @default.
- W4220761790 abstract "We present herein a polynomial chaos-Kriging (PC-Kriging)-based molecular dynamics (MD) simulation framework of twisted bilayer graphene (tBLG) structures to investigate the influence of stochastic parametric variations on their nano-indentation behaviour. The relative rotation angle (RRA) and operating temperature were taken as input parameters, which were randomly distributed in the ranges 0–30° and 100–900 K, respectively. Considering Monte Carlo sampling (MCS), a series of MD simulations of nano-indentation was performed to obtain the critical indentation force (Fcr) and critical indentation depth (δcr) in each instance. The dataset generated by MCS-driven MD simulation was employed to train and validate the PC-Kriging-based metamodel. The generalization capability of the constructed model was ensured by implementing a leave-points-out (LpO) cross-validation scheme, and by minimizing prediction errors by adopting a sufficient size of samples for model training and validation. The constructed computationally efficient PC-Kriging-based metamodel has been used to perform data-driven uncertainty and probabilistic analysis. The hybrid machine-learning-based stochastic nano-indentation behaviour of tBLG structures has been described, considering practically relevant uncertain irregularities in RRA and temperature. The present analysis aims to capture the continuous parametric range of input parameters so as to allow detailed probabilistic investigation of the nano-indentation behaviour of tBLG nanostructures." @default.
- W4220761790 created "2022-04-03" @default.
- W4220761790 creator A5001247097 @default.
- W4220761790 creator A5035843564 @default.
- W4220761790 creator A5090449217 @default.
- W4220761790 date "2022-08-01" @default.
- W4220761790 modified "2023-10-17" @default.
- W4220761790 title "Hybrid machine-learning-assisted stochastic nano-indentation behaviour of twisted bilayer graphene" @default.
- W4220761790 cites W1939826769 @default.
- W4220761790 cites W1987218437 @default.
- W4220761790 cites W2003288668 @default.
- W4220761790 cites W2010177887 @default.
- W4220761790 cites W2010971702 @default.
- W4220761790 cites W2019465613 @default.
- W4220761790 cites W2025108991 @default.
- W4220761790 cites W2029503981 @default.
- W4220761790 cites W2029667189 @default.
- W4220761790 cites W2033327592 @default.
- W4220761790 cites W2047968138 @default.
- W4220761790 cites W2101977779 @default.
- W4220761790 cites W2152832683 @default.
- W4220761790 cites W2290998558 @default.
- W4220761790 cites W2412845579 @default.
- W4220761790 cites W2462896045 @default.
- W4220761790 cites W2513032667 @default.
- W4220761790 cites W2520258155 @default.
- W4220761790 cites W2554758172 @default.
- W4220761790 cites W2591990932 @default.
- W4220761790 cites W2593039337 @default.
- W4220761790 cites W2600442429 @default.
- W4220761790 cites W2607393744 @default.
- W4220761790 cites W2732137611 @default.
- W4220761790 cites W2761936997 @default.
- W4220761790 cites W2793369479 @default.
- W4220761790 cites W2888778785 @default.
- W4220761790 cites W2905666219 @default.
- W4220761790 cites W2922801365 @default.
- W4220761790 cites W2938426936 @default.
- W4220761790 cites W2939580688 @default.
- W4220761790 cites W2942805314 @default.
- W4220761790 cites W2944401666 @default.
- W4220761790 cites W2947019364 @default.
- W4220761790 cites W2963889731 @default.
- W4220761790 cites W2978364638 @default.
- W4220761790 cites W2998847955 @default.
- W4220761790 cites W3011326986 @default.
- W4220761790 cites W3012873558 @default.
- W4220761790 cites W3027797640 @default.
- W4220761790 cites W3034873091 @default.
- W4220761790 cites W3084354688 @default.
- W4220761790 cites W3091825725 @default.
- W4220761790 cites W3123138918 @default.
- W4220761790 cites W3131259011 @default.
- W4220761790 cites W3153043071 @default.
- W4220761790 cites W3163591848 @default.
- W4220761790 cites W3194132527 @default.
- W4220761790 cites W3194470714 @default.
- W4220761790 cites W3204753624 @default.
- W4220761790 cites W3207966415 @default.
- W4220761790 cites W3216735510 @default.
- W4220761790 doi "https://doi.org/10.1016/j.jpcs.2022.110711" @default.
- W4220761790 hasPublicationYear "2022" @default.
- W4220761790 type Work @default.
- W4220761790 citedByCount "10" @default.
- W4220761790 countsByYear W42207617902022 @default.
- W4220761790 countsByYear W42207617902023 @default.
- W4220761790 crossrefType "journal-article" @default.
- W4220761790 hasAuthorship W4220761790A5001247097 @default.
- W4220761790 hasAuthorship W4220761790A5035843564 @default.
- W4220761790 hasAuthorship W4220761790A5090449217 @default.
- W4220761790 hasConcept C105795698 @default.
- W4220761790 hasConcept C11413529 @default.
- W4220761790 hasConcept C117251300 @default.
- W4220761790 hasConcept C119857082 @default.
- W4220761790 hasConcept C154945302 @default.
- W4220761790 hasConcept C159985019 @default.
- W4220761790 hasConcept C192562407 @default.
- W4220761790 hasConcept C19499675 @default.
- W4220761790 hasConcept C197656079 @default.
- W4220761790 hasConcept C2780902562 @default.
- W4220761790 hasConcept C33923547 @default.
- W4220761790 hasConcept C41008148 @default.
- W4220761790 hasConcept C49937458 @default.
- W4220761790 hasConcept C81692654 @default.
- W4220761790 hasConceptScore W4220761790C105795698 @default.
- W4220761790 hasConceptScore W4220761790C11413529 @default.
- W4220761790 hasConceptScore W4220761790C117251300 @default.
- W4220761790 hasConceptScore W4220761790C119857082 @default.
- W4220761790 hasConceptScore W4220761790C154945302 @default.
- W4220761790 hasConceptScore W4220761790C159985019 @default.
- W4220761790 hasConceptScore W4220761790C192562407 @default.
- W4220761790 hasConceptScore W4220761790C19499675 @default.
- W4220761790 hasConceptScore W4220761790C197656079 @default.
- W4220761790 hasConceptScore W4220761790C2780902562 @default.
- W4220761790 hasConceptScore W4220761790C33923547 @default.
- W4220761790 hasConceptScore W4220761790C41008148 @default.
- W4220761790 hasConceptScore W4220761790C49937458 @default.
- W4220761790 hasConceptScore W4220761790C81692654 @default.