Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220762910> ?p ?o ?g. }
- W4220762910 endingPage "104842" @default.
- W4220762910 startingPage "104842" @default.
- W4220762910 abstract "In recent years, magnetite trace elements have increasingly been applied in studies into ore deposits. The magnetite trace element characteristics of different deposit types have been summarized, but to date no satisfactory explanation has been obtained as to why magnetite samples from some iron oxide-apatite (IOA) deposits exhibit similar trace element characteristics to those in iron-oxide copper gold (IOCG) deposits, or even skarn deposits. The Daling IOA deposit is located in the Luzong volcanic basin, Eastern China. Multi-stage magnetite have developed within the deposit; which provides a good opportunity to study the evolution process of magnetite trace elements in an IOA deposit. Here, sensitive high-resolution ion microprobe (SHRIMP) in situ sulfur isotope analysis was carried out for pyrites at different depths in the deposit. Pyrites at different locations exhibited similar sulfur isotope compositions, falling within the magmatic sulfur range (0.1‰–5.2‰), indicating that the ore-forming fluid of the Daling deposit was not affected by the Triassic evaporite, and that the trace element characteristics of its magnetite were mainly controlled by its magmatic-hydrothermal evolution process. Magnetite within the deposit can be divided into three sub-stages. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis revealed that magnetite (Mag-a) in vertical veinlets exhibits the highest Ti, V, Mn, and Zn contents; magnetite (Mag-b), which is associated with diopside and tremolite in coarse veinlets, exhibits the highest Mg, Al, Co, and Ni contents and brecciated magnetite (Mag-c) exhibits the lowest V content, the highest Mn and Zn contents, and similar Mg, Al, Ti, and Co contents to those of Mag-b. Comparing the trace elements of the three types of magnetite revealed that hydrothermal fluid can assimilate and absorb albite-diopside altered rock that forms in the early stage, resulting in hydrothermal fluid that is rich in Mg, Al and Si. Thus, magnetite samples in IOA deposits can exhibit similar features to those in skarn deposits through multi-stage, long-distance fluid evolution. Therefore, before using magnetite trace elements to discuss the characteristics of hydrothermal fluid, it is important to carefully investigate the basic geological characteristics of a given deposit and the mineralogical characteristics of its magnetite." @default.
- W4220762910 created "2022-04-03" @default.
- W4220762910 creator A5030689354 @default.
- W4220762910 creator A5037007156 @default.
- W4220762910 creator A5052716256 @default.
- W4220762910 creator A5057468767 @default.
- W4220762910 creator A5065810124 @default.
- W4220762910 creator A5067247788 @default.
- W4220762910 creator A5090514819 @default.
- W4220762910 date "2022-05-01" @default.
- W4220762910 modified "2023-09-30" @default.
- W4220762910 title "Trace element evolution of magnetite in iron oxide-apatite deposits: Case study of Daling deposit, Eastern China" @default.
- W4220762910 cites W1225814248 @default.
- W4220762910 cites W1965537167 @default.
- W4220762910 cites W1970364252 @default.
- W4220762910 cites W1976522262 @default.
- W4220762910 cites W1996199789 @default.
- W4220762910 cites W2018366877 @default.
- W4220762910 cites W2030026706 @default.
- W4220762910 cites W2030970465 @default.
- W4220762910 cites W2038153312 @default.
- W4220762910 cites W2051426660 @default.
- W4220762910 cites W2058347901 @default.
- W4220762910 cites W2068352523 @default.
- W4220762910 cites W2069649096 @default.
- W4220762910 cites W2100178610 @default.
- W4220762910 cites W2105963017 @default.
- W4220762910 cites W2132872344 @default.
- W4220762910 cites W2133042542 @default.
- W4220762910 cites W2137141094 @default.
- W4220762910 cites W2186908455 @default.
- W4220762910 cites W2315862663 @default.
- W4220762910 cites W2317143605 @default.
- W4220762910 cites W2337753537 @default.
- W4220762910 cites W2511316475 @default.
- W4220762910 cites W2548352797 @default.
- W4220762910 cites W2596858885 @default.
- W4220762910 cites W2734063287 @default.
- W4220762910 cites W2803616851 @default.
- W4220762910 cites W2806373564 @default.
- W4220762910 cites W2894443869 @default.
- W4220762910 cites W2894630820 @default.
- W4220762910 cites W2922999483 @default.
- W4220762910 cites W2938755284 @default.
- W4220762910 cites W2945779745 @default.
- W4220762910 cites W2953147035 @default.
- W4220762910 cites W2966323972 @default.
- W4220762910 cites W3000660243 @default.
- W4220762910 cites W3084335392 @default.
- W4220762910 cites W3087117075 @default.
- W4220762910 cites W3099244018 @default.
- W4220762910 doi "https://doi.org/10.1016/j.oregeorev.2022.104842" @default.
- W4220762910 hasPublicationYear "2022" @default.
- W4220762910 type Work @default.
- W4220762910 citedByCount "3" @default.
- W4220762910 countsByYear W42207629102022 @default.
- W4220762910 countsByYear W42207629102023 @default.
- W4220762910 crossrefType "journal-article" @default.
- W4220762910 hasAuthorship W4220762910A5030689354 @default.
- W4220762910 hasAuthorship W4220762910A5037007156 @default.
- W4220762910 hasAuthorship W4220762910A5052716256 @default.
- W4220762910 hasAuthorship W4220762910A5057468767 @default.
- W4220762910 hasAuthorship W4220762910A5065810124 @default.
- W4220762910 hasAuthorship W4220762910A5067247788 @default.
- W4220762910 hasAuthorship W4220762910A5090514819 @default.
- W4220762910 hasBestOaLocation W42207629101 @default.
- W4220762910 hasConcept C102198088 @default.
- W4220762910 hasConcept C127313418 @default.
- W4220762910 hasConcept C140167661 @default.
- W4220762910 hasConcept C151730666 @default.
- W4220762910 hasConcept C156622251 @default.
- W4220762910 hasConcept C165205528 @default.
- W4220762910 hasConcept C17409809 @default.
- W4220762910 hasConcept C191897082 @default.
- W4220762910 hasConcept C192562407 @default.
- W4220762910 hasConcept C195843664 @default.
- W4220762910 hasConcept C199289684 @default.
- W4220762910 hasConcept C2776152364 @default.
- W4220762910 hasConcept C2777781897 @default.
- W4220762910 hasConcept C2778302498 @default.
- W4220762910 hasConcept C34682378 @default.
- W4220762910 hasConcept C40724407 @default.
- W4220762910 hasConcept C510490043 @default.
- W4220762910 hasConcept C7145564 @default.
- W4220762910 hasConceptScore W4220762910C102198088 @default.
- W4220762910 hasConceptScore W4220762910C127313418 @default.
- W4220762910 hasConceptScore W4220762910C140167661 @default.
- W4220762910 hasConceptScore W4220762910C151730666 @default.
- W4220762910 hasConceptScore W4220762910C156622251 @default.
- W4220762910 hasConceptScore W4220762910C165205528 @default.
- W4220762910 hasConceptScore W4220762910C17409809 @default.
- W4220762910 hasConceptScore W4220762910C191897082 @default.
- W4220762910 hasConceptScore W4220762910C192562407 @default.
- W4220762910 hasConceptScore W4220762910C195843664 @default.
- W4220762910 hasConceptScore W4220762910C199289684 @default.
- W4220762910 hasConceptScore W4220762910C2776152364 @default.
- W4220762910 hasConceptScore W4220762910C2777781897 @default.
- W4220762910 hasConceptScore W4220762910C2778302498 @default.