Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220762983> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4220762983 endingPage "106770" @default.
- W4220762983 startingPage "106770" @default.
- W4220762983 abstract "Prostate cancer is the most common cancer of the male reproductive system. With the development of medical imaging technology, magnetic resonance images (MRI) have been used in the diagnosis and treatment of prostate cancer because of its clarity and non-invasiveness. Prostate MRI segmentation and diagnosis experience problems such as low tissue boundary contrast. The traditional segmentation method of manually drawing the contour boundary of the tissue cannot meet the clinical real-time requirements. How to quickly and accurately segment the prostate tumor has become an important research topic.This paper proposes a prostate tumor diagnosis based on the deep learning network PSP-Net+VGG16. The deep convolutional neural network segmentation method based on the PSP-Net constructs a atrous convolution residual structure model extraction network. First, the three-dimensional prostate MRI is converted to two-dimensional image slices, and then the slice input of the two-dimensional image is trained based on the PSP-Net neural network; and the VGG16 network is used to analyze the region of interest and classify prostate cancer and normal prostate.According to the experimental results, the segmentation method based on the deep learning network PSP-Net is used to identify the data set samples. The segmentation accuracy is close to the Dice similarity coefficient and Hausdorff distance, and even exceeds the traditional prostate image segmentation method. The Dice index reached 91.3%, and the technique is superior in speed of processing. The predicted tumor markers are very close to the actual markers manually by clinicians; the classification accuracy and recognition rates of prostate MRI based on VGG16 are as high as 87.95% and 87.33%, and the accuracy rate and recall rate of the network model are relatively balanced. The area under curve index is also higher than other models, with good generalization ability.Experiments show that prostate cancer diagnosis based on the deep learning network PSP-Net+VGG16 is superior in accuracy and processing time compared to other algorithms, and can be well applied to clinical prostate tumor diagnosis." @default.
- W4220762983 created "2022-04-03" @default.
- W4220762983 creator A5032038979 @default.
- W4220762983 creator A5033719879 @default.
- W4220762983 creator A5034508107 @default.
- W4220762983 creator A5090423848 @default.
- W4220762983 date "2022-06-01" @default.
- W4220762983 modified "2023-10-14" @default.
- W4220762983 title "Medical image diagnosis of prostate tumor based on PSP-Net+VGG16 deep learning network" @default.
- W4220762983 cites W1982668309 @default.
- W4220762983 cites W1988777729 @default.
- W4220762983 cites W2065875833 @default.
- W4220762983 cites W2075710862 @default.
- W4220762983 cites W2089507999 @default.
- W4220762983 cites W2104276184 @default.
- W4220762983 cites W2106033751 @default.
- W4220762983 cites W2253429366 @default.
- W4220762983 cites W2463801705 @default.
- W4220762983 cites W2588133393 @default.
- W4220762983 cites W2949519357 @default.
- W4220762983 cites W2978707514 @default.
- W4220762983 doi "https://doi.org/10.1016/j.cmpb.2022.106770" @default.
- W4220762983 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35640389" @default.
- W4220762983 hasPublicationYear "2022" @default.
- W4220762983 type Work @default.
- W4220762983 citedByCount "10" @default.
- W4220762983 countsByYear W42207629832022 @default.
- W4220762983 countsByYear W42207629832023 @default.
- W4220762983 crossrefType "journal-article" @default.
- W4220762983 hasAuthorship W4220762983A5032038979 @default.
- W4220762983 hasAuthorship W4220762983A5033719879 @default.
- W4220762983 hasAuthorship W4220762983A5034508107 @default.
- W4220762983 hasAuthorship W4220762983A5090423848 @default.
- W4220762983 hasConcept C108583219 @default.
- W4220762983 hasConcept C115961682 @default.
- W4220762983 hasConcept C121608353 @default.
- W4220762983 hasConcept C124504099 @default.
- W4220762983 hasConcept C126322002 @default.
- W4220762983 hasConcept C141898687 @default.
- W4220762983 hasConcept C153180895 @default.
- W4220762983 hasConcept C154945302 @default.
- W4220762983 hasConcept C163892561 @default.
- W4220762983 hasConcept C2776235491 @default.
- W4220762983 hasConcept C2780192828 @default.
- W4220762983 hasConcept C41008148 @default.
- W4220762983 hasConcept C50644808 @default.
- W4220762983 hasConcept C71924100 @default.
- W4220762983 hasConcept C81363708 @default.
- W4220762983 hasConcept C89600930 @default.
- W4220762983 hasConcept C9417928 @default.
- W4220762983 hasConceptScore W4220762983C108583219 @default.
- W4220762983 hasConceptScore W4220762983C115961682 @default.
- W4220762983 hasConceptScore W4220762983C121608353 @default.
- W4220762983 hasConceptScore W4220762983C124504099 @default.
- W4220762983 hasConceptScore W4220762983C126322002 @default.
- W4220762983 hasConceptScore W4220762983C141898687 @default.
- W4220762983 hasConceptScore W4220762983C153180895 @default.
- W4220762983 hasConceptScore W4220762983C154945302 @default.
- W4220762983 hasConceptScore W4220762983C163892561 @default.
- W4220762983 hasConceptScore W4220762983C2776235491 @default.
- W4220762983 hasConceptScore W4220762983C2780192828 @default.
- W4220762983 hasConceptScore W4220762983C41008148 @default.
- W4220762983 hasConceptScore W4220762983C50644808 @default.
- W4220762983 hasConceptScore W4220762983C71924100 @default.
- W4220762983 hasConceptScore W4220762983C81363708 @default.
- W4220762983 hasConceptScore W4220762983C89600930 @default.
- W4220762983 hasConceptScore W4220762983C9417928 @default.
- W4220762983 hasLocation W42207629831 @default.
- W4220762983 hasLocation W42207629832 @default.
- W4220762983 hasOpenAccess W4220762983 @default.
- W4220762983 hasPrimaryLocation W42207629831 @default.
- W4220762983 hasRelatedWork W1121315442 @default.
- W4220762983 hasRelatedWork W2003403120 @default.
- W4220762983 hasRelatedWork W2124501761 @default.
- W4220762983 hasRelatedWork W3000597650 @default.
- W4220762983 hasRelatedWork W3034562762 @default.
- W4220762983 hasRelatedWork W3188463548 @default.
- W4220762983 hasRelatedWork W4319792695 @default.
- W4220762983 hasRelatedWork W4363650189 @default.
- W4220762983 hasRelatedWork W4380986815 @default.
- W4220762983 hasRelatedWork W3127600691 @default.
- W4220762983 hasVolume "221" @default.
- W4220762983 isParatext "false" @default.
- W4220762983 isRetracted "false" @default.
- W4220762983 workType "article" @default.