Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220764559> ?p ?o ?g. }
- W4220764559 endingPage "100399" @default.
- W4220764559 startingPage "100399" @default.
- W4220764559 abstract "Wind speed prediction has received reasonable attention recently because of its clean and promising source of renewable energy. Recent studies have shown that developing efficient model to predict wind speed is a challenging task because of its nonlinear and stochastic characteristics. This paper aims to propose a new hybrid model to predict wind speed. For this purpose, Discrete Wavelet Transform (DWT), Phase Space Reconstruction (PSR) of chaos theory, Aquila Optimization Algorithm (AOA) and Backpropagation Neural Network (BPNN) are hybridised and a novel DWT-PSR-AOA-BPNN is proposed. To ascertain the proposed DWT-PSR-AOA-BPNN model performance, different hybrid model variants (DWT-PSR-GA-BPNN, DWT-PSR-PSO-BPNN, PSR-PSO-BPNN and PSR-AOA-BPNN) were developed for comparison. The comparison was done using statistical model evaluators of Mean Average Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and model efficiency of Loague and Green (ELG). The statistical results showed that the proposed DWT-PSR-AOA-BPNN model performed better and is therefore considered efficient wind speed prediction tool when compared with DWT-PSR-GA-BPNN, DWT-PSR-PSO-BPNN, PSR-PSO-BPNN and PSR-AOA-BPNN hybrid models. That is, the proposed DWT-PSR-AOA-BPNN had the lowest MAE, RMSE and MAPE values for the model testing (MAE = 1.1490, RMSE = 1.4190 and MAPE = 0.2743) and validation (MAE = 0.8122, RMSE = 0.9771 and MAPE = 0.1953). The DWT-PSR-AOA-BPNN also achieved the highest ELG values of 0.9904 (testing) and 0.99738 (validation) respectively. It is therefore concluded that considering the DWT-PSR-AOA-BPNN results, the indication corroborates the fact that this model can be utilized for efficient grid operations." @default.
- W4220764559 created "2022-04-03" @default.
- W4220764559 creator A5007131658 @default.
- W4220764559 creator A5020873245 @default.
- W4220764559 creator A5042049631 @default.
- W4220764559 creator A5051258802 @default.
- W4220764559 date "2022-06-01" @default.
- W4220764559 modified "2023-10-11" @default.
- W4220764559 title "A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction" @default.
- W4220764559 cites W1971353559 @default.
- W4220764559 cites W1980701638 @default.
- W4220764559 cites W2003725769 @default.
- W4220764559 cites W2005791255 @default.
- W4220764559 cites W2048533094 @default.
- W4220764559 cites W2067656095 @default.
- W4220764559 cites W2130610609 @default.
- W4220764559 cites W2158224578 @default.
- W4220764559 cites W2329476579 @default.
- W4220764559 cites W2539221552 @default.
- W4220764559 cites W2581561224 @default.
- W4220764559 cites W2605224847 @default.
- W4220764559 cites W2606683984 @default.
- W4220764559 cites W2611034349 @default.
- W4220764559 cites W2614975484 @default.
- W4220764559 cites W2754015034 @default.
- W4220764559 cites W2776150244 @default.
- W4220764559 cites W2789989341 @default.
- W4220764559 cites W2792616493 @default.
- W4220764559 cites W2801503429 @default.
- W4220764559 cites W2805677640 @default.
- W4220764559 cites W2810182372 @default.
- W4220764559 cites W2884538367 @default.
- W4220764559 cites W2890324410 @default.
- W4220764559 cites W2902252637 @default.
- W4220764559 cites W2910279921 @default.
- W4220764559 cites W2919841204 @default.
- W4220764559 cites W2920894825 @default.
- W4220764559 cites W2943863241 @default.
- W4220764559 cites W2979975116 @default.
- W4220764559 cites W2994818485 @default.
- W4220764559 cites W3000461720 @default.
- W4220764559 cites W3088297322 @default.
- W4220764559 cites W3088394751 @default.
- W4220764559 cites W3111349778 @default.
- W4220764559 cites W3113689553 @default.
- W4220764559 cites W3127670633 @default.
- W4220764559 cites W3138770585 @default.
- W4220764559 cites W3139484821 @default.
- W4220764559 cites W3159197733 @default.
- W4220764559 cites W3169342031 @default.
- W4220764559 cites W3173985852 @default.
- W4220764559 cites W3184971861 @default.
- W4220764559 cites W3188145474 @default.
- W4220764559 cites W3189366232 @default.
- W4220764559 cites W3193066514 @default.
- W4220764559 cites W3216629925 @default.
- W4220764559 cites W4205527244 @default.
- W4220764559 doi "https://doi.org/10.1016/j.rineng.2022.100399" @default.
- W4220764559 hasPublicationYear "2022" @default.
- W4220764559 type Work @default.
- W4220764559 citedByCount "10" @default.
- W4220764559 countsByYear W42207645592022 @default.
- W4220764559 countsByYear W42207645592023 @default.
- W4220764559 crossrefType "journal-article" @default.
- W4220764559 hasAuthorship W4220764559A5007131658 @default.
- W4220764559 hasAuthorship W4220764559A5020873245 @default.
- W4220764559 hasAuthorship W4220764559A5042049631 @default.
- W4220764559 hasAuthorship W4220764559A5051258802 @default.
- W4220764559 hasBestOaLocation W42207645591 @default.
- W4220764559 hasConcept C105795698 @default.
- W4220764559 hasConcept C11413529 @default.
- W4220764559 hasConcept C121332964 @default.
- W4220764559 hasConcept C139945424 @default.
- W4220764559 hasConcept C150217764 @default.
- W4220764559 hasConcept C153180895 @default.
- W4220764559 hasConcept C153294291 @default.
- W4220764559 hasConcept C154945302 @default.
- W4220764559 hasConcept C155032097 @default.
- W4220764559 hasConcept C161067210 @default.
- W4220764559 hasConcept C196216189 @default.
- W4220764559 hasConcept C2777052490 @default.
- W4220764559 hasConcept C33923547 @default.
- W4220764559 hasConcept C41008148 @default.
- W4220764559 hasConcept C46286280 @default.
- W4220764559 hasConcept C47432892 @default.
- W4220764559 hasConcept C50644808 @default.
- W4220764559 hasConceptScore W4220764559C105795698 @default.
- W4220764559 hasConceptScore W4220764559C11413529 @default.
- W4220764559 hasConceptScore W4220764559C121332964 @default.
- W4220764559 hasConceptScore W4220764559C139945424 @default.
- W4220764559 hasConceptScore W4220764559C150217764 @default.
- W4220764559 hasConceptScore W4220764559C153180895 @default.
- W4220764559 hasConceptScore W4220764559C153294291 @default.
- W4220764559 hasConceptScore W4220764559C154945302 @default.
- W4220764559 hasConceptScore W4220764559C155032097 @default.
- W4220764559 hasConceptScore W4220764559C161067210 @default.
- W4220764559 hasConceptScore W4220764559C196216189 @default.
- W4220764559 hasConceptScore W4220764559C2777052490 @default.