Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220764579> ?p ?o ?g. }
- W4220764579 endingPage "114784" @default.
- W4220764579 startingPage "114784" @default.
- W4220764579 abstract "We propose an efficient Monte Carlo simulation method to address the multivariate uncertainties in acoustic–vibration interaction systems. The deep neural network acts as a general surrogate model to enhance the sampling efficiency of Monte Carlo Simulation. Singular Value Decomposition - Radial Basis Functions (SVD-RBF) acts as a bridge between the original full model and the neural network, enabling the training datasets of the neural network to be evaluated rapidly from a reduced-order model. The snapshots of full order models are obtained with isogeometric analysis, in which we couple two numerical schemes for vibro–acoustic interaction problems: the isogeometric finite element method for simulating vibration of Kirchhoff–Love shells and isogeometric boundary element method for exterior acoustic waves. Numerical results show that the proposed algorithm can significantly improve the efficiency of uncertainty analysis." @default.
- W4220764579 created "2022-04-03" @default.
- W4220764579 creator A5000067683 @default.
- W4220764579 creator A5013067182 @default.
- W4220764579 creator A5024756547 @default.
- W4220764579 creator A5026055732 @default.
- W4220764579 creator A5052281306 @default.
- W4220764579 creator A5078881912 @default.
- W4220764579 date "2022-04-01" @default.
- W4220764579 modified "2023-09-28" @default.
- W4220764579 title "A sample-efficient deep learning method for multivariate uncertainty qualification of acoustic–vibration interaction problems" @default.
- W4220764579 cites W1604224450 @default.
- W4220764579 cites W1859979375 @default.
- W4220764579 cites W1980220299 @default.
- W4220764579 cites W1988945200 @default.
- W4220764579 cites W1990254060 @default.
- W4220764579 cites W1994540804 @default.
- W4220764579 cites W1998301011 @default.
- W4220764579 cites W2000425991 @default.
- W4220764579 cites W2011521894 @default.
- W4220764579 cites W2018159038 @default.
- W4220764579 cites W2021125631 @default.
- W4220764579 cites W2040385657 @default.
- W4220764579 cites W2044894268 @default.
- W4220764579 cites W2055689370 @default.
- W4220764579 cites W2058143740 @default.
- W4220764579 cites W2059894353 @default.
- W4220764579 cites W2060682310 @default.
- W4220764579 cites W2082030226 @default.
- W4220764579 cites W2091601192 @default.
- W4220764579 cites W2113442785 @default.
- W4220764579 cites W2113517083 @default.
- W4220764579 cites W2124741347 @default.
- W4220764579 cites W2128728535 @default.
- W4220764579 cites W2134069922 @default.
- W4220764579 cites W2136602340 @default.
- W4220764579 cites W2178971237 @default.
- W4220764579 cites W2282795067 @default.
- W4220764579 cites W2298083683 @default.
- W4220764579 cites W2340040980 @default.
- W4220764579 cites W2344914177 @default.
- W4220764579 cites W236613404 @default.
- W4220764579 cites W2388787028 @default.
- W4220764579 cites W2753246113 @default.
- W4220764579 cites W2784733489 @default.
- W4220764579 cites W2786232134 @default.
- W4220764579 cites W2790769196 @default.
- W4220764579 cites W2884644430 @default.
- W4220764579 cites W2899283552 @default.
- W4220764579 cites W2908541468 @default.
- W4220764579 cites W2913860281 @default.
- W4220764579 cites W2916310691 @default.
- W4220764579 cites W2935339072 @default.
- W4220764579 cites W2948230027 @default.
- W4220764579 cites W2961344315 @default.
- W4220764579 cites W2963909211 @default.
- W4220764579 cites W2969812083 @default.
- W4220764579 cites W2969919798 @default.
- W4220764579 cites W2998847955 @default.
- W4220764579 cites W3001165133 @default.
- W4220764579 cites W3006689658 @default.
- W4220764579 cites W3044250493 @default.
- W4220764579 cites W3044427216 @default.
- W4220764579 cites W3084276559 @default.
- W4220764579 cites W3088151227 @default.
- W4220764579 cites W3136718260 @default.
- W4220764579 cites W3204502327 @default.
- W4220764579 cites W3214460300 @default.
- W4220764579 cites W4200551307 @default.
- W4220764579 cites W4214740385 @default.
- W4220764579 doi "https://doi.org/10.1016/j.cma.2022.114784" @default.
- W4220764579 hasPublicationYear "2022" @default.
- W4220764579 type Work @default.
- W4220764579 citedByCount "26" @default.
- W4220764579 countsByYear W42207645792022 @default.
- W4220764579 countsByYear W42207645792023 @default.
- W4220764579 crossrefType "journal-article" @default.
- W4220764579 hasAuthorship W4220764579A5000067683 @default.
- W4220764579 hasAuthorship W4220764579A5013067182 @default.
- W4220764579 hasAuthorship W4220764579A5024756547 @default.
- W4220764579 hasAuthorship W4220764579A5026055732 @default.
- W4220764579 hasAuthorship W4220764579A5052281306 @default.
- W4220764579 hasAuthorship W4220764579A5078881912 @default.
- W4220764579 hasConcept C105795698 @default.
- W4220764579 hasConcept C11413529 @default.
- W4220764579 hasConcept C119857082 @default.
- W4220764579 hasConcept C121332964 @default.
- W4220764579 hasConcept C12426560 @default.
- W4220764579 hasConcept C126255220 @default.
- W4220764579 hasConcept C127413603 @default.
- W4220764579 hasConcept C131675550 @default.
- W4220764579 hasConcept C134306372 @default.
- W4220764579 hasConcept C135628077 @default.
- W4220764579 hasConcept C154945302 @default.
- W4220764579 hasConcept C161584116 @default.
- W4220764579 hasConcept C19499675 @default.
- W4220764579 hasConcept C198394728 @default.
- W4220764579 hasConcept C22789450 @default.