Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220772646> ?p ?o ?g. }
- W4220772646 abstract "Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,θ) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications." @default.
- W4220772646 created "2022-04-03" @default.
- W4220772646 creator A5007882747 @default.
- W4220772646 creator A5037374990 @default.
- W4220772646 creator A5038142458 @default.
- W4220772646 creator A5054909575 @default.
- W4220772646 creator A5054938412 @default.
- W4220772646 creator A5059314323 @default.
- W4220772646 creator A5074694520 @default.
- W4220772646 creator A5076974425 @default.
- W4220772646 creator A5079809471 @default.
- W4220772646 creator A5080604201 @default.
- W4220772646 creator A5081852492 @default.
- W4220772646 creator A5088723329 @default.
- W4220772646 date "2022-04-04" @default.
- W4220772646 modified "2023-09-27" @default.
- W4220772646 title "Automatic microchannel detection using deep learning in intravascular optical coherence tomography images" @default.
- W4220772646 cites W1980794962 @default.
- W4220772646 cites W2051525349 @default.
- W4220772646 cites W2099898677 @default.
- W4220772646 cites W2130882112 @default.
- W4220772646 cites W2531409750 @default.
- W4220772646 cites W2803779111 @default.
- W4220772646 cites W2902947916 @default.
- W4220772646 cites W2946573978 @default.
- W4220772646 cites W2978984895 @default.
- W4220772646 cites W2990936018 @default.
- W4220772646 cites W2997304980 @default.
- W4220772646 cites W3005455668 @default.
- W4220772646 cites W3006475810 @default.
- W4220772646 cites W3112208724 @default.
- W4220772646 cites W3129251108 @default.
- W4220772646 cites W4250685322 @default.
- W4220772646 cites W4255822925 @default.
- W4220772646 doi "https://doi.org/10.1117/12.2612697" @default.
- W4220772646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36465096" @default.
- W4220772646 hasPublicationYear "2022" @default.
- W4220772646 type Work @default.
- W4220772646 citedByCount "6" @default.
- W4220772646 countsByYear W42207726462022 @default.
- W4220772646 countsByYear W42207726462023 @default.
- W4220772646 crossrefType "proceedings-article" @default.
- W4220772646 hasAuthorship W4220772646A5007882747 @default.
- W4220772646 hasAuthorship W4220772646A5037374990 @default.
- W4220772646 hasAuthorship W4220772646A5038142458 @default.
- W4220772646 hasAuthorship W4220772646A5054909575 @default.
- W4220772646 hasAuthorship W4220772646A5054938412 @default.
- W4220772646 hasAuthorship W4220772646A5059314323 @default.
- W4220772646 hasAuthorship W4220772646A5074694520 @default.
- W4220772646 hasAuthorship W4220772646A5076974425 @default.
- W4220772646 hasAuthorship W4220772646A5079809471 @default.
- W4220772646 hasAuthorship W4220772646A5080604201 @default.
- W4220772646 hasAuthorship W4220772646A5081852492 @default.
- W4220772646 hasAuthorship W4220772646A5088723329 @default.
- W4220772646 hasBestOaLocation W42207726462 @default.
- W4220772646 hasConcept C108583219 @default.
- W4220772646 hasConcept C124504099 @default.
- W4220772646 hasConcept C126838900 @default.
- W4220772646 hasConcept C153180895 @default.
- W4220772646 hasConcept C154945302 @default.
- W4220772646 hasConcept C163892561 @default.
- W4220772646 hasConcept C171250308 @default.
- W4220772646 hasConcept C192562407 @default.
- W4220772646 hasConcept C2778818243 @default.
- W4220772646 hasConcept C31972630 @default.
- W4220772646 hasConcept C41008148 @default.
- W4220772646 hasConcept C63662833 @default.
- W4220772646 hasConcept C64869954 @default.
- W4220772646 hasConcept C71924100 @default.
- W4220772646 hasConcept C81363708 @default.
- W4220772646 hasConcept C89600930 @default.
- W4220772646 hasConceptScore W4220772646C108583219 @default.
- W4220772646 hasConceptScore W4220772646C124504099 @default.
- W4220772646 hasConceptScore W4220772646C126838900 @default.
- W4220772646 hasConceptScore W4220772646C153180895 @default.
- W4220772646 hasConceptScore W4220772646C154945302 @default.
- W4220772646 hasConceptScore W4220772646C163892561 @default.
- W4220772646 hasConceptScore W4220772646C171250308 @default.
- W4220772646 hasConceptScore W4220772646C192562407 @default.
- W4220772646 hasConceptScore W4220772646C2778818243 @default.
- W4220772646 hasConceptScore W4220772646C31972630 @default.
- W4220772646 hasConceptScore W4220772646C41008148 @default.
- W4220772646 hasConceptScore W4220772646C63662833 @default.
- W4220772646 hasConceptScore W4220772646C64869954 @default.
- W4220772646 hasConceptScore W4220772646C71924100 @default.
- W4220772646 hasConceptScore W4220772646C81363708 @default.
- W4220772646 hasConceptScore W4220772646C89600930 @default.
- W4220772646 hasLocation W42207726461 @default.
- W4220772646 hasLocation W42207726462 @default.
- W4220772646 hasLocation W42207726463 @default.
- W4220772646 hasOpenAccess W4220772646 @default.
- W4220772646 hasPrimaryLocation W42207726461 @default.
- W4220772646 hasRelatedWork W2769435486 @default.
- W4220772646 hasRelatedWork W2915754718 @default.
- W4220772646 hasRelatedWork W2979932740 @default.
- W4220772646 hasRelatedWork W3102253946 @default.
- W4220772646 hasRelatedWork W3111570720 @default.
- W4220772646 hasRelatedWork W3128305826 @default.
- W4220772646 hasRelatedWork W3135174555 @default.
- W4220772646 hasRelatedWork W4226289457 @default.