Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220772655> ?p ?o ?g. }
- W4220772655 endingPage "14" @default.
- W4220772655 startingPage "1" @default.
- W4220772655 abstract "Cardiovascular disease is one of the most common diseases in the modern world, which, if diagnosed early, can greatly reduce the damage to the patient. Diagnosis of heart disease requires great care, and in some cases, the process can be disrupted by human error. Machine learning methods, especially data mining, have gained international acceptance in almost all aspects of life, especially the prediction of heart disease. On the other hand, datasets related to heart patients have many biological features that most of these features do not have a direct impact on diagnosis. By removing redundant features from the dataset, in addition to reducing computational complexity, the accuracy of heart patients’ predictions can also be increased. This paper presents a density-based unsupervised approach to the diagnosis of abnormalities in heart patients. In this method, the basic features in the dataset are first selected based on the filter-based feature selection approach. Then, the DBSCAN clustering method with adaptive parameters has used to increase the clustering accuracy of healthy instances and to determine abnormal instances as cardiac patients. Partition clustering methods suffer from the selection of the number of clusters and the initial central points and are very sensitive to noise. The DBSCAN method solves these problems by creating density-based clusters, but the selection of the neighborhood radius threshold and the number of connected points in the neighborhood remains unresolved. In the proposed method, these two parameters are selected adaptively to achieve the highest accuracy for the diagnosis and prediction of heart patients. The results of the experiments show that the accuracy of the proposed method for predicting heart patients is approximately 95%, which has improved in comparison with previous methods." @default.
- W4220772655 created "2022-04-03" @default.
- W4220772655 creator A5030241951 @default.
- W4220772655 creator A5032292973 @default.
- W4220772655 creator A5052361631 @default.
- W4220772655 creator A5057298092 @default.
- W4220772655 creator A5072733191 @default.
- W4220772655 creator A5087624954 @default.
- W4220772655 creator A5089014599 @default.
- W4220772655 date "2022-03-26" @default.
- W4220772655 modified "2023-10-14" @default.
- W4220772655 title "Anomaly Detection in Heart Disease Using a Density-Based Unsupervised Approach" @default.
- W4220772655 cites W2346714907 @default.
- W4220772655 cites W2755582817 @default.
- W4220772655 cites W2790827964 @default.
- W4220772655 cites W2793384337 @default.
- W4220772655 cites W2811188240 @default.
- W4220772655 cites W2902899981 @default.
- W4220772655 cites W2910065608 @default.
- W4220772655 cites W2938740813 @default.
- W4220772655 cites W2963307331 @default.
- W4220772655 cites W2966115099 @default.
- W4220772655 cites W2972390400 @default.
- W4220772655 cites W2999011722 @default.
- W4220772655 cites W3037322243 @default.
- W4220772655 cites W3127192532 @default.
- W4220772655 cites W3134840015 @default.
- W4220772655 cites W3166079209 @default.
- W4220772655 cites W3177781640 @default.
- W4220772655 cites W4210630286 @default.
- W4220772655 doi "https://doi.org/10.1155/2022/6913043" @default.
- W4220772655 hasPublicationYear "2022" @default.
- W4220772655 type Work @default.
- W4220772655 citedByCount "10" @default.
- W4220772655 countsByYear W42207726552022 @default.
- W4220772655 countsByYear W42207726552023 @default.
- W4220772655 crossrefType "journal-article" @default.
- W4220772655 hasAuthorship W4220772655A5030241951 @default.
- W4220772655 hasAuthorship W4220772655A5032292973 @default.
- W4220772655 hasAuthorship W4220772655A5052361631 @default.
- W4220772655 hasAuthorship W4220772655A5057298092 @default.
- W4220772655 hasAuthorship W4220772655A5072733191 @default.
- W4220772655 hasAuthorship W4220772655A5087624954 @default.
- W4220772655 hasAuthorship W4220772655A5089014599 @default.
- W4220772655 hasBestOaLocation W42207726551 @default.
- W4220772655 hasConcept C106131492 @default.
- W4220772655 hasConcept C115961682 @default.
- W4220772655 hasConcept C119857082 @default.
- W4220772655 hasConcept C124101348 @default.
- W4220772655 hasConcept C148483581 @default.
- W4220772655 hasConcept C153180895 @default.
- W4220772655 hasConcept C154945302 @default.
- W4220772655 hasConcept C164705383 @default.
- W4220772655 hasConcept C2780074459 @default.
- W4220772655 hasConcept C31972630 @default.
- W4220772655 hasConcept C33704608 @default.
- W4220772655 hasConcept C41008148 @default.
- W4220772655 hasConcept C46576248 @default.
- W4220772655 hasConcept C71924100 @default.
- W4220772655 hasConcept C73555534 @default.
- W4220772655 hasConcept C739882 @default.
- W4220772655 hasConcept C8038995 @default.
- W4220772655 hasConcept C94641424 @default.
- W4220772655 hasConcept C99498987 @default.
- W4220772655 hasConceptScore W4220772655C106131492 @default.
- W4220772655 hasConceptScore W4220772655C115961682 @default.
- W4220772655 hasConceptScore W4220772655C119857082 @default.
- W4220772655 hasConceptScore W4220772655C124101348 @default.
- W4220772655 hasConceptScore W4220772655C148483581 @default.
- W4220772655 hasConceptScore W4220772655C153180895 @default.
- W4220772655 hasConceptScore W4220772655C154945302 @default.
- W4220772655 hasConceptScore W4220772655C164705383 @default.
- W4220772655 hasConceptScore W4220772655C2780074459 @default.
- W4220772655 hasConceptScore W4220772655C31972630 @default.
- W4220772655 hasConceptScore W4220772655C33704608 @default.
- W4220772655 hasConceptScore W4220772655C41008148 @default.
- W4220772655 hasConceptScore W4220772655C46576248 @default.
- W4220772655 hasConceptScore W4220772655C71924100 @default.
- W4220772655 hasConceptScore W4220772655C73555534 @default.
- W4220772655 hasConceptScore W4220772655C739882 @default.
- W4220772655 hasConceptScore W4220772655C8038995 @default.
- W4220772655 hasConceptScore W4220772655C94641424 @default.
- W4220772655 hasConceptScore W4220772655C99498987 @default.
- W4220772655 hasLocation W42207726551 @default.
- W4220772655 hasOpenAccess W4220772655 @default.
- W4220772655 hasPrimaryLocation W42207726551 @default.
- W4220772655 hasRelatedWork W2186523764 @default.
- W4220772655 hasRelatedWork W2187492663 @default.
- W4220772655 hasRelatedWork W2330870411 @default.
- W4220772655 hasRelatedWork W2368219397 @default.
- W4220772655 hasRelatedWork W2474073737 @default.
- W4220772655 hasRelatedWork W2503866109 @default.
- W4220772655 hasRelatedWork W2959625647 @default.
- W4220772655 hasRelatedWork W3004596345 @default.
- W4220772655 hasRelatedWork W3168814018 @default.
- W4220772655 hasRelatedWork W4290987788 @default.
- W4220772655 hasVolume "2022" @default.
- W4220772655 isParatext "false" @default.