Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220778644> ?p ?o ?g. }
- W4220778644 endingPage "14" @default.
- W4220778644 startingPage "1" @default.
- W4220778644 abstract "Most patients with diabetes mellitus are asymptomatic, which leads to delayed and more complex treatment. At the same time, most individuals are routinely subjected to standard clinical laboratory examinations, which create large health datasets over a lifetime. Computer processing has been used to search for health anomalies and predict diseases using clinical examinations. This work studied machine learning models to support the screening of diabetes through routine laboratory tests using data from laboratory tests of 62,496 patients. The classification and regression models used were the K-nearest neighbor, support vector machines, Bayes naïve, random forest models, and artificial neural networks. Glycated hemoglobin, a test used for diabetes diagnosis, was used as the target. Regression models calculated glycated hemoglobin directly and were later classified. The performance of classification computer models has been studied under various subdataset partitions and combinations (e.g., healthy, prediabetic, and diabetes, as well as no healthy and no diabetes). The best single performance was achieved with the artificial neural network model when detecting prediabetes or diabetes. The artificial neural network classification model scored 78.1%, 78.7%, and 78.4% for sensitivity, precision, and F1 scores, respectively, when identifying no healthy group. Other models also had good results, depending on what is desired. Machine learning-based models can predict glycated hemoglobin values from routine laboratory tests and can be used as a screening tool to refer a patient for further testing." @default.
- W4220778644 created "2022-04-03" @default.
- W4220778644 creator A5016951681 @default.
- W4220778644 creator A5046051474 @default.
- W4220778644 creator A5046312126 @default.
- W4220778644 creator A5073850423 @default.
- W4220778644 creator A5075549781 @default.
- W4220778644 date "2022-03-29" @default.
- W4220778644 modified "2023-10-03" @default.
- W4220778644 title "Use of Machine Learning and Routine Laboratory Tests for Diabetes Mellitus Screening" @default.
- W4220778644 cites W2032837774 @default.
- W4220778644 cites W2037981927 @default.
- W4220778644 cites W2038216402 @default.
- W4220778644 cites W2057179468 @default.
- W4220778644 cites W2072750629 @default.
- W4220778644 cites W2099007659 @default.
- W4220778644 cites W2117343153 @default.
- W4220778644 cites W2120529317 @default.
- W4220778644 cites W2144979740 @default.
- W4220778644 cites W2161104871 @default.
- W4220778644 cites W2167814310 @default.
- W4220778644 cites W2409491581 @default.
- W4220778644 cites W2468477102 @default.
- W4220778644 cites W2490470819 @default.
- W4220778644 cites W2610135452 @default.
- W4220778644 cites W2616009730 @default.
- W4220778644 cites W2736872388 @default.
- W4220778644 cites W2749602957 @default.
- W4220778644 cites W2895671827 @default.
- W4220778644 cites W2897468376 @default.
- W4220778644 cites W2909707045 @default.
- W4220778644 cites W2922442184 @default.
- W4220778644 cites W2950722229 @default.
- W4220778644 cites W2958272623 @default.
- W4220778644 cites W2970872946 @default.
- W4220778644 cites W2981121978 @default.
- W4220778644 cites W3007406359 @default.
- W4220778644 cites W3009002510 @default.
- W4220778644 cites W3014972479 @default.
- W4220778644 cites W3022812136 @default.
- W4220778644 cites W3080441768 @default.
- W4220778644 cites W3080967847 @default.
- W4220778644 cites W3089072720 @default.
- W4220778644 cites W3115324092 @default.
- W4220778644 cites W3115744613 @default.
- W4220778644 cites W3133694720 @default.
- W4220778644 cites W3142654793 @default.
- W4220778644 cites W3160866949 @default.
- W4220778644 cites W3165845449 @default.
- W4220778644 cites W3168811973 @default.
- W4220778644 cites W3183218270 @default.
- W4220778644 cites W3196807113 @default.
- W4220778644 cites W3203507716 @default.
- W4220778644 cites W3211300968 @default.
- W4220778644 cites W4239837977 @default.
- W4220778644 doi "https://doi.org/10.1155/2022/8114049" @default.
- W4220778644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35392258" @default.
- W4220778644 hasPublicationYear "2022" @default.
- W4220778644 type Work @default.
- W4220778644 citedByCount "1" @default.
- W4220778644 countsByYear W42207786442022 @default.
- W4220778644 crossrefType "journal-article" @default.
- W4220778644 hasAuthorship W4220778644A5016951681 @default.
- W4220778644 hasAuthorship W4220778644A5046051474 @default.
- W4220778644 hasAuthorship W4220778644A5046312126 @default.
- W4220778644 hasAuthorship W4220778644A5073850423 @default.
- W4220778644 hasAuthorship W4220778644A5075549781 @default.
- W4220778644 hasBestOaLocation W42207786441 @default.
- W4220778644 hasConcept C119857082 @default.
- W4220778644 hasConcept C12267149 @default.
- W4220778644 hasConcept C134018914 @default.
- W4220778644 hasConcept C154945302 @default.
- W4220778644 hasConcept C169258074 @default.
- W4220778644 hasConcept C2777180221 @default.
- W4220778644 hasConcept C2777538456 @default.
- W4220778644 hasConcept C2779668308 @default.
- W4220778644 hasConcept C41008148 @default.
- W4220778644 hasConcept C50644808 @default.
- W4220778644 hasConcept C52001869 @default.
- W4220778644 hasConcept C555293320 @default.
- W4220778644 hasConcept C71924100 @default.
- W4220778644 hasConceptScore W4220778644C119857082 @default.
- W4220778644 hasConceptScore W4220778644C12267149 @default.
- W4220778644 hasConceptScore W4220778644C134018914 @default.
- W4220778644 hasConceptScore W4220778644C154945302 @default.
- W4220778644 hasConceptScore W4220778644C169258074 @default.
- W4220778644 hasConceptScore W4220778644C2777180221 @default.
- W4220778644 hasConceptScore W4220778644C2777538456 @default.
- W4220778644 hasConceptScore W4220778644C2779668308 @default.
- W4220778644 hasConceptScore W4220778644C41008148 @default.
- W4220778644 hasConceptScore W4220778644C50644808 @default.
- W4220778644 hasConceptScore W4220778644C52001869 @default.
- W4220778644 hasConceptScore W4220778644C555293320 @default.
- W4220778644 hasConceptScore W4220778644C71924100 @default.
- W4220778644 hasLocation W42207786441 @default.
- W4220778644 hasLocation W42207786442 @default.
- W4220778644 hasLocation W42207786443 @default.
- W4220778644 hasOpenAccess W4220778644 @default.