Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220779192> ?p ?o ?g. }
- W4220779192 endingPage "582" @default.
- W4220779192 startingPage "568" @default.
- W4220779192 abstract "Summary Following the rapid growth of unconventional resources, many models and methods have been proposed for forecasting the performances of unconventional wells. Several studies have attempted to use machine learning (ML) for improving the forecasting. However, owing to limitations of ML in regard to long-term forecasts (e.g., the occurrence of unphysical results), most of these ML forecasts are not satisfactory. In this work, we propose, demonstrate, and discuss a new ML approach able to rapidly provide probabilistic, long-term forecasts of oil production rates from individual wells in a decline curve analysis (DCA) manner. The novelties of the proposed approach are as follows: (1) it combines an automated ML (AutoML) method for supervised learning and a Bayesian neural ordinary differential equation (BN-ODE) framework for time-series modeling; (2) it uses the DCA model to inform the BN-ODE framework of “physics” and regulate the BN-ODE forecasts; and (3) several completion parameters (such as locations, lengths, and slickwater volume) of individual wells are analyzed and included as the inputs of model building, in addition to measured oil production rate data. Specifically, AutoML method is first used to model the relationship between the well location, completion parameters, and the DCAs parameters, and the BN-ODE framework is then used to model the relationship between the DCAs parameters and the time-series oil production rates. A publicly accessible data set, consisting of completion parameters and oil production rates, of 396 horizontal wells in the Bakken Shale Formation is used to train and test the model of the proposed approach. The results lead to the conclusion that the proposed approach is practical for providing probabilistic, long-term forecasts of oil production from individual wells, given data of existing wells in the reservoir." @default.
- W4220779192 created "2022-04-03" @default.
- W4220779192 creator A5021398723 @default.
- W4220779192 creator A5073779833 @default.
- W4220779192 creator A5077092071 @default.
- W4220779192 date "2022-03-11" @default.
- W4220779192 modified "2023-10-17" @default.
- W4220779192 title "Bayesian Deep Decline Curve Analysis: A New Approach for Well Oil Production Modeling and Forecasting" @default.
- W4220779192 cites W1967809830 @default.
- W4220779192 cites W1977643758 @default.
- W4220779192 cites W1996800808 @default.
- W4220779192 cites W1998748246 @default.
- W4220779192 cites W2011430131 @default.
- W4220779192 cites W2016312983 @default.
- W4220779192 cites W2052790603 @default.
- W4220779192 cites W2059448777 @default.
- W4220779192 cites W2069970580 @default.
- W4220779192 cites W2081383199 @default.
- W4220779192 cites W2093283927 @default.
- W4220779192 cites W2140291117 @default.
- W4220779192 cites W2162498574 @default.
- W4220779192 cites W2194775991 @default.
- W4220779192 cites W2273690011 @default.
- W4220779192 cites W2296609147 @default.
- W4220779192 cites W2472969106 @default.
- W4220779192 cites W2564922814 @default.
- W4220779192 cites W2570180962 @default.
- W4220779192 cites W2581526618 @default.
- W4220779192 cites W2586525098 @default.
- W4220779192 cites W2761936790 @default.
- W4220779192 cites W2793350103 @default.
- W4220779192 cites W2891040936 @default.
- W4220779192 cites W2924328461 @default.
- W4220779192 cites W2928559977 @default.
- W4220779192 cites W2930038033 @default.
- W4220779192 cites W2963276185 @default.
- W4220779192 cites W2963787356 @default.
- W4220779192 cites W3000664444 @default.
- W4220779192 cites W3005772284 @default.
- W4220779192 cites W3006356655 @default.
- W4220779192 cites W3022298391 @default.
- W4220779192 cites W3132663141 @default.
- W4220779192 cites W4232672007 @default.
- W4220779192 doi "https://doi.org/10.2118/209616-pa" @default.
- W4220779192 hasPublicationYear "2022" @default.
- W4220779192 type Work @default.
- W4220779192 citedByCount "2" @default.
- W4220779192 countsByYear W42207791922023 @default.
- W4220779192 crossrefType "journal-article" @default.
- W4220779192 hasAuthorship W4220779192A5021398723 @default.
- W4220779192 hasAuthorship W4220779192A5073779833 @default.
- W4220779192 hasAuthorship W4220779192A5077092071 @default.
- W4220779192 hasConcept C107673813 @default.
- W4220779192 hasConcept C119857082 @default.
- W4220779192 hasConcept C121332964 @default.
- W4220779192 hasConcept C127413603 @default.
- W4220779192 hasConcept C134306372 @default.
- W4220779192 hasConcept C139719470 @default.
- W4220779192 hasConcept C149782125 @default.
- W4220779192 hasConcept C151406439 @default.
- W4220779192 hasConcept C154945302 @default.
- W4220779192 hasConcept C160234255 @default.
- W4220779192 hasConcept C162324750 @default.
- W4220779192 hasConcept C2778348673 @default.
- W4220779192 hasConcept C28826006 @default.
- W4220779192 hasConcept C2984309096 @default.
- W4220779192 hasConcept C33923547 @default.
- W4220779192 hasConcept C34862557 @default.
- W4220779192 hasConcept C41008148 @default.
- W4220779192 hasConcept C50644808 @default.
- W4220779192 hasConcept C51544822 @default.
- W4220779192 hasConcept C61797465 @default.
- W4220779192 hasConcept C62520636 @default.
- W4220779192 hasConcept C78045399 @default.
- W4220779192 hasConcept C78762247 @default.
- W4220779192 hasConceptScore W4220779192C107673813 @default.
- W4220779192 hasConceptScore W4220779192C119857082 @default.
- W4220779192 hasConceptScore W4220779192C121332964 @default.
- W4220779192 hasConceptScore W4220779192C127413603 @default.
- W4220779192 hasConceptScore W4220779192C134306372 @default.
- W4220779192 hasConceptScore W4220779192C139719470 @default.
- W4220779192 hasConceptScore W4220779192C149782125 @default.
- W4220779192 hasConceptScore W4220779192C151406439 @default.
- W4220779192 hasConceptScore W4220779192C154945302 @default.
- W4220779192 hasConceptScore W4220779192C160234255 @default.
- W4220779192 hasConceptScore W4220779192C162324750 @default.
- W4220779192 hasConceptScore W4220779192C2778348673 @default.
- W4220779192 hasConceptScore W4220779192C28826006 @default.
- W4220779192 hasConceptScore W4220779192C2984309096 @default.
- W4220779192 hasConceptScore W4220779192C33923547 @default.
- W4220779192 hasConceptScore W4220779192C34862557 @default.
- W4220779192 hasConceptScore W4220779192C41008148 @default.
- W4220779192 hasConceptScore W4220779192C50644808 @default.
- W4220779192 hasConceptScore W4220779192C51544822 @default.
- W4220779192 hasConceptScore W4220779192C61797465 @default.
- W4220779192 hasConceptScore W4220779192C62520636 @default.
- W4220779192 hasConceptScore W4220779192C78045399 @default.
- W4220779192 hasConceptScore W4220779192C78762247 @default.