Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220779614> ?p ?o ?g. }
- W4220779614 endingPage "802" @default.
- W4220779614 startingPage "802" @default.
- W4220779614 abstract "Early recognition of sepsis and the prediction of mortality in patients with infection are important. This multi-center, ED-based study aimed to develop and validate a 28-day mortality prediction model for patients with infection using various machine learning (ML) algorithms.Patients with acute infection requiring intravenous antibiotic treatment during the first 24 h of admission were prospectively recruited. Patient demographics, comorbidities, clinical signs and symptoms, laboratory test data, selected sepsis-related novel biomarkers, and 28-day mortality were collected and divided into training (70%) and testing (30%) datasets. Logistic regression and seven ML algorithms were used to develop the prediction models. The area under the receiver operating characteristic curve (AUROC) was used to compare different models.A total of 555 patients were recruited with a full panel of biomarker tests. Among them, 18% fulfilled Sepsis-3 criteria, with a 28-day mortality rate of 8%. The wrapper algorithm selected 30 features, including disease severity scores, biochemical parameters, and conventional and few sepsis-related biomarkers. Random forest outperformed other ML models (AUROC: 0.96; 95% confidence interval: 0.93-0.98) and SOFA and early warning scores (AUROC: 0.64-0.84) in the prediction of 28-day mortality in patients with infection. Additionally, random forest remained the best-performing model, with an AUROC of 0.95 (95% CI: 0.91-0.98, p = 0.725) after removing five sepsis-related novel biomarkers.Our results demonstrated that ML models provide a more accurate prediction of 28-day mortality with an enhanced ability in dealing with multi-dimensional data than the logistic regression model." @default.
- W4220779614 created "2022-04-03" @default.
- W4220779614 creator A5000620409 @default.
- W4220779614 creator A5022717674 @default.
- W4220779614 creator A5033716599 @default.
- W4220779614 creator A5033902225 @default.
- W4220779614 creator A5034837904 @default.
- W4220779614 creator A5045479562 @default.
- W4220779614 creator A5059003193 @default.
- W4220779614 creator A5085940305 @default.
- W4220779614 date "2022-03-29" @default.
- W4220779614 modified "2023-09-30" @default.
- W4220779614 title "Using Machine Learning to Develop and Validate an In-Hospital Mortality Prediction Model for Patients with Suspected Sepsis" @default.
- W4220779614 cites W1810820517 @default.
- W4220779614 cites W1898928487 @default.
- W4220779614 cites W1967757899 @default.
- W4220779614 cites W1991181258 @default.
- W4220779614 cites W2006758816 @default.
- W4220779614 cites W2050389359 @default.
- W4220779614 cites W2077937390 @default.
- W4220779614 cites W2082922491 @default.
- W4220779614 cites W2104157166 @default.
- W4220779614 cites W2121032725 @default.
- W4220779614 cites W2132886902 @default.
- W4220779614 cites W2156665896 @default.
- W4220779614 cites W2169205464 @default.
- W4220779614 cites W2169211991 @default.
- W4220779614 cites W2170285826 @default.
- W4220779614 cites W2200122354 @default.
- W4220779614 cites W2280404143 @default.
- W4220779614 cites W2282181907 @default.
- W4220779614 cites W2403408669 @default.
- W4220779614 cites W2546691245 @default.
- W4220779614 cites W2580821343 @default.
- W4220779614 cites W2581766282 @default.
- W4220779614 cites W2590906758 @default.
- W4220779614 cites W2755626276 @default.
- W4220779614 cites W2767154288 @default.
- W4220779614 cites W2768146862 @default.
- W4220779614 cites W2892741787 @default.
- W4220779614 cites W2899355182 @default.
- W4220779614 cites W2905983446 @default.
- W4220779614 cites W2912475038 @default.
- W4220779614 cites W2913362828 @default.
- W4220779614 cites W2944920235 @default.
- W4220779614 cites W2972400447 @default.
- W4220779614 cites W2999615587 @default.
- W4220779614 cites W3027377361 @default.
- W4220779614 cites W3027548201 @default.
- W4220779614 cites W3090266264 @default.
- W4220779614 cites W3171681618 @default.
- W4220779614 doi "https://doi.org/10.3390/biomedicines10040802" @default.
- W4220779614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35453552" @default.
- W4220779614 hasPublicationYear "2022" @default.
- W4220779614 type Work @default.
- W4220779614 citedByCount "2" @default.
- W4220779614 countsByYear W42207796142023 @default.
- W4220779614 crossrefType "journal-article" @default.
- W4220779614 hasAuthorship W4220779614A5000620409 @default.
- W4220779614 hasAuthorship W4220779614A5022717674 @default.
- W4220779614 hasAuthorship W4220779614A5033716599 @default.
- W4220779614 hasAuthorship W4220779614A5033902225 @default.
- W4220779614 hasAuthorship W4220779614A5034837904 @default.
- W4220779614 hasAuthorship W4220779614A5045479562 @default.
- W4220779614 hasAuthorship W4220779614A5059003193 @default.
- W4220779614 hasAuthorship W4220779614A5085940305 @default.
- W4220779614 hasBestOaLocation W42207796141 @default.
- W4220779614 hasConcept C119857082 @default.
- W4220779614 hasConcept C126322002 @default.
- W4220779614 hasConcept C144024400 @default.
- W4220779614 hasConcept C149923435 @default.
- W4220779614 hasConcept C151956035 @default.
- W4220779614 hasConcept C169258074 @default.
- W4220779614 hasConcept C179755657 @default.
- W4220779614 hasConcept C185592680 @default.
- W4220779614 hasConcept C194828623 @default.
- W4220779614 hasConcept C2777671062 @default.
- W4220779614 hasConcept C2778384902 @default.
- W4220779614 hasConcept C2780084366 @default.
- W4220779614 hasConcept C2781197716 @default.
- W4220779614 hasConcept C41008148 @default.
- W4220779614 hasConcept C44249647 @default.
- W4220779614 hasConcept C55493867 @default.
- W4220779614 hasConcept C58471807 @default.
- W4220779614 hasConcept C71924100 @default.
- W4220779614 hasConcept C76318530 @default.
- W4220779614 hasConceptScore W4220779614C119857082 @default.
- W4220779614 hasConceptScore W4220779614C126322002 @default.
- W4220779614 hasConceptScore W4220779614C144024400 @default.
- W4220779614 hasConceptScore W4220779614C149923435 @default.
- W4220779614 hasConceptScore W4220779614C151956035 @default.
- W4220779614 hasConceptScore W4220779614C169258074 @default.
- W4220779614 hasConceptScore W4220779614C179755657 @default.
- W4220779614 hasConceptScore W4220779614C185592680 @default.
- W4220779614 hasConceptScore W4220779614C194828623 @default.
- W4220779614 hasConceptScore W4220779614C2777671062 @default.
- W4220779614 hasConceptScore W4220779614C2778384902 @default.
- W4220779614 hasConceptScore W4220779614C2780084366 @default.