Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220781698> ?p ?o ?g. }
- W4220781698 endingPage "119208" @default.
- W4220781698 startingPage "119208" @default.
- W4220781698 abstract "Aquifer vulnerability mapping to pollution is topical research activity, and common frameworks such as the basic DRASTIC framework (BDF) suffer from the inherent subjectivity. This paper formulates an artificial intelligence modeling strategy based on Convolutional Neural Network (CNN) to decrease subjectivity. This formulation considers three definitions of intrinsic, specific, and total vulnerabilities. Accordingly, three CNN models are trained and tested to calculate IVI, SVI, and TVI, respectively referring to the intrinsic, specific, and total vulnerability indices. The formulation is applied in an unconfined aquifer northwest of Iran and delineates hotspots within the aquifer. The area under curve (AUC) values derived by the receiver operating curves evaluate the vulnerability indices versus nitrate concentrations. The AUC values for BDF, IVI, SVI, and TVI are 0.81, 0.91, 0.95, and 0.95, respectively. Therefore, CNNs significantly improve the results compared to BDF, but IVI, SVI, and TVI have approximately identical performances. However, the visual comparison between their results provides evidence that significant differences exist between the spatial patterns despite identical AUC values." @default.
- W4220781698 created "2022-04-03" @default.
- W4220781698 creator A5000442615 @default.
- W4220781698 creator A5026508642 @default.
- W4220781698 creator A5031501504 @default.
- W4220781698 creator A5043789167 @default.
- W4220781698 creator A5044694185 @default.
- W4220781698 date "2022-07-01" @default.
- W4220781698 modified "2023-10-06" @default.
- W4220781698 title "Formulating Convolutional Neural Network for mapping total aquifer vulnerability to pollution" @default.
- W4220781698 cites W1990748933 @default.
- W4220781698 cites W1996051870 @default.
- W4220781698 cites W2003913953 @default.
- W4220781698 cites W2004671607 @default.
- W4220781698 cites W2013990421 @default.
- W4220781698 cites W2038929774 @default.
- W4220781698 cites W2076063813 @default.
- W4220781698 cites W2112796928 @default.
- W4220781698 cites W2155478812 @default.
- W4220781698 cites W2197935307 @default.
- W4220781698 cites W2273149604 @default.
- W4220781698 cites W2463577151 @default.
- W4220781698 cites W2531455364 @default.
- W4220781698 cites W2608985946 @default.
- W4220781698 cites W2724648452 @default.
- W4220781698 cites W2786232134 @default.
- W4220781698 cites W2796816642 @default.
- W4220781698 cites W2804254869 @default.
- W4220781698 cites W2809254203 @default.
- W4220781698 cites W2810292802 @default.
- W4220781698 cites W2886245647 @default.
- W4220781698 cites W2903716900 @default.
- W4220781698 cites W2915483120 @default.
- W4220781698 cites W2922588341 @default.
- W4220781698 cites W2963273475 @default.
- W4220781698 cites W2980044060 @default.
- W4220781698 cites W2980376317 @default.
- W4220781698 cites W2990439305 @default.
- W4220781698 cites W2991254718 @default.
- W4220781698 cites W2992567626 @default.
- W4220781698 cites W2994632932 @default.
- W4220781698 cites W2998440117 @default.
- W4220781698 cites W3014819696 @default.
- W4220781698 cites W3016376459 @default.
- W4220781698 cites W3032560352 @default.
- W4220781698 cites W3047057933 @default.
- W4220781698 cites W3087906417 @default.
- W4220781698 cites W3098430959 @default.
- W4220781698 cites W3140854437 @default.
- W4220781698 cites W3157358059 @default.
- W4220781698 cites W3160399451 @default.
- W4220781698 cites W3165568892 @default.
- W4220781698 cites W3186427810 @default.
- W4220781698 cites W3193465739 @default.
- W4220781698 cites W3195219767 @default.
- W4220781698 cites W3201715788 @default.
- W4220781698 cites W3202497309 @default.
- W4220781698 cites W4200436488 @default.
- W4220781698 cites W4210425239 @default.
- W4220781698 cites W4211180302 @default.
- W4220781698 cites W626243351 @default.
- W4220781698 doi "https://doi.org/10.1016/j.envpol.2022.119208" @default.
- W4220781698 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35351597" @default.
- W4220781698 hasPublicationYear "2022" @default.
- W4220781698 type Work @default.
- W4220781698 citedByCount "9" @default.
- W4220781698 countsByYear W42207816982022 @default.
- W4220781698 countsByYear W42207816982023 @default.
- W4220781698 crossrefType "journal-article" @default.
- W4220781698 hasAuthorship W4220781698A5000442615 @default.
- W4220781698 hasAuthorship W4220781698A5026508642 @default.
- W4220781698 hasAuthorship W4220781698A5031501504 @default.
- W4220781698 hasAuthorship W4220781698A5043789167 @default.
- W4220781698 hasAuthorship W4220781698A5044694185 @default.
- W4220781698 hasConcept C105795698 @default.
- W4220781698 hasConcept C119857082 @default.
- W4220781698 hasConcept C127313418 @default.
- W4220781698 hasConcept C154945302 @default.
- W4220781698 hasConcept C187320778 @default.
- W4220781698 hasConcept C18903297 @default.
- W4220781698 hasConcept C33923547 @default.
- W4220781698 hasConcept C38652104 @default.
- W4220781698 hasConcept C39432304 @default.
- W4220781698 hasConcept C41008148 @default.
- W4220781698 hasConcept C521259446 @default.
- W4220781698 hasConcept C524765639 @default.
- W4220781698 hasConcept C58471807 @default.
- W4220781698 hasConcept C75622301 @default.
- W4220781698 hasConcept C76177295 @default.
- W4220781698 hasConcept C76886044 @default.
- W4220781698 hasConcept C81363708 @default.
- W4220781698 hasConcept C86803240 @default.
- W4220781698 hasConcept C95713431 @default.
- W4220781698 hasConceptScore W4220781698C105795698 @default.
- W4220781698 hasConceptScore W4220781698C119857082 @default.
- W4220781698 hasConceptScore W4220781698C127313418 @default.
- W4220781698 hasConceptScore W4220781698C154945302 @default.
- W4220781698 hasConceptScore W4220781698C187320778 @default.