Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220781799> ?p ?o ?g. }
- W4220781799 endingPage "164" @default.
- W4220781799 startingPage "148" @default.
- W4220781799 abstract "Derivative and volatility attributes can be usefully calculated from recorded gamma ray (GR) data to enhance lithofacies classification in wellbores penetrating multiple lithologies. Such attributes extract information about the log curve shape that cannot be readily discerned from the recorded well log data. A logged wellbore section for which 8911 data records are available for the three recorded logs (GR, sonic (DT) and bulk density (PB)) is evaluated. That section demonstrates the value of the GR attributes for machine learning (ML) lithofacies predictions. Five feature selection configurations are considered. The 9-var configuration including GR, DT, PB and six GR attributes, and the 7-var configuration of GR and the six GR attributes, provide the most accurate and reproducible lithofacies predictions. The other three feature configurations evaluated do not include the GR attributes but just one to three of the recorded log features. The results of seven ML models and two regression models reveal that K-nearest neighbor (KNN), random forest (RF) and extreme gradient boosting (XGB) are the best performing models. They generate between 14 and 23 misclassification from 8911 data records for the 9-var model. Multi-layer perceptron (MLP) and support vector classification (SVC) do not perform well with the 7-var model which lacks the PB feature displaying the highest correlation with facies class. Annotated confusion matrices reveal that KNN, RF and XGB models can effectively distinguish all facies classes for the 9-var and 7-var configurations (that includes the GR attributes), whereas none of the models can achieve that outcome for the 3-var configuration (that excludes the GR attributes). Accurately distinguishing lithofacies using well-log data in sedimentary sections is an important objective in applied geoscience. The straightforward, GR-attribute method proposed works to improve confidence in ML-lithofacies classifications based on limited recorded well-log data." @default.
- W4220781799 created "2022-04-03" @default.
- W4220781799 creator A5028777364 @default.
- W4220781799 date "2021-12-01" @default.
- W4220781799 modified "2023-10-03" @default.
- W4220781799 title "Enhancing lithofacies machine learning predictions with gamma-ray attributes for boreholes with limited diversity of recorded well logs" @default.
- W4220781799 cites W1988790447 @default.
- W4220781799 cites W1993192109 @default.
- W4220781799 cites W2010014763 @default.
- W4220781799 cites W2030518800 @default.
- W4220781799 cites W2040870580 @default.
- W4220781799 cites W2084274514 @default.
- W4220781799 cites W2113242816 @default.
- W4220781799 cites W2138053943 @default.
- W4220781799 cites W2430816949 @default.
- W4220781799 cites W2529108047 @default.
- W4220781799 cites W2594681445 @default.
- W4220781799 cites W2626176756 @default.
- W4220781799 cites W2789508474 @default.
- W4220781799 cites W2795176283 @default.
- W4220781799 cites W2807914764 @default.
- W4220781799 cites W2963819471 @default.
- W4220781799 cites W2964034089 @default.
- W4220781799 cites W2967703992 @default.
- W4220781799 cites W2973564105 @default.
- W4220781799 cites W2985504740 @default.
- W4220781799 cites W2985644328 @default.
- W4220781799 cites W3005069491 @default.
- W4220781799 cites W3012134571 @default.
- W4220781799 cites W3045843444 @default.
- W4220781799 cites W3081826980 @default.
- W4220781799 cites W3116184042 @default.
- W4220781799 cites W3142671630 @default.
- W4220781799 cites W4206386873 @default.
- W4220781799 cites W4236137412 @default.
- W4220781799 cites W4239510810 @default.
- W4220781799 doi "https://doi.org/10.1016/j.aiig.2022.02.007" @default.
- W4220781799 hasPublicationYear "2021" @default.
- W4220781799 type Work @default.
- W4220781799 citedByCount "5" @default.
- W4220781799 countsByYear W42207817992022 @default.
- W4220781799 countsByYear W42207817992023 @default.
- W4220781799 crossrefType "journal-article" @default.
- W4220781799 hasAuthorship W4220781799A5028777364 @default.
- W4220781799 hasBestOaLocation W42207817991 @default.
- W4220781799 hasConcept C109007969 @default.
- W4220781799 hasConcept C119857082 @default.
- W4220781799 hasConcept C12267149 @default.
- W4220781799 hasConcept C124101348 @default.
- W4220781799 hasConcept C127313418 @default.
- W4220781799 hasConcept C138885662 @default.
- W4220781799 hasConcept C146588470 @default.
- W4220781799 hasConcept C148483581 @default.
- W4220781799 hasConcept C151730666 @default.
- W4220781799 hasConcept C153180895 @default.
- W4220781799 hasConcept C154945302 @default.
- W4220781799 hasConcept C169258074 @default.
- W4220781799 hasConcept C179717631 @default.
- W4220781799 hasConcept C2776401178 @default.
- W4220781799 hasConcept C33923547 @default.
- W4220781799 hasConcept C41008148 @default.
- W4220781799 hasConcept C41895202 @default.
- W4220781799 hasConcept C46686674 @default.
- W4220781799 hasConcept C50644808 @default.
- W4220781799 hasConcept C60908668 @default.
- W4220781799 hasConceptScore W4220781799C109007969 @default.
- W4220781799 hasConceptScore W4220781799C119857082 @default.
- W4220781799 hasConceptScore W4220781799C12267149 @default.
- W4220781799 hasConceptScore W4220781799C124101348 @default.
- W4220781799 hasConceptScore W4220781799C127313418 @default.
- W4220781799 hasConceptScore W4220781799C138885662 @default.
- W4220781799 hasConceptScore W4220781799C146588470 @default.
- W4220781799 hasConceptScore W4220781799C148483581 @default.
- W4220781799 hasConceptScore W4220781799C151730666 @default.
- W4220781799 hasConceptScore W4220781799C153180895 @default.
- W4220781799 hasConceptScore W4220781799C154945302 @default.
- W4220781799 hasConceptScore W4220781799C169258074 @default.
- W4220781799 hasConceptScore W4220781799C179717631 @default.
- W4220781799 hasConceptScore W4220781799C2776401178 @default.
- W4220781799 hasConceptScore W4220781799C33923547 @default.
- W4220781799 hasConceptScore W4220781799C41008148 @default.
- W4220781799 hasConceptScore W4220781799C41895202 @default.
- W4220781799 hasConceptScore W4220781799C46686674 @default.
- W4220781799 hasConceptScore W4220781799C50644808 @default.
- W4220781799 hasConceptScore W4220781799C60908668 @default.
- W4220781799 hasLocation W42207817991 @default.
- W4220781799 hasOpenAccess W4220781799 @default.
- W4220781799 hasPrimaryLocation W42207817991 @default.
- W4220781799 hasRelatedWork W1996541855 @default.
- W4220781799 hasRelatedWork W2985924212 @default.
- W4220781799 hasRelatedWork W3034132578 @default.
- W4220781799 hasRelatedWork W3150651898 @default.
- W4220781799 hasRelatedWork W3168994312 @default.
- W4220781799 hasRelatedWork W3195168932 @default.
- W4220781799 hasRelatedWork W3209934268 @default.
- W4220781799 hasRelatedWork W4293525103 @default.
- W4220781799 hasRelatedWork W4327511089 @default.
- W4220781799 hasRelatedWork W2345184372 @default.