Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220782259> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4220782259 abstract "Microwave radar sensors in human-computer interactions have several advantages compared to wearable and image-based sensors, such as privacy preservation, high reliability regardless of the ambient and lighting conditions, and larger field of view. However, the raw signals produced by such radars are high-dimension and relatively complex to interpret. Advanced data processing, including machine learning techniques, is therefore necessary for gesture recognition. While these approaches can reach high gesture recognition accuracy, using artificial neural networks requires a significant amount of gesture templates for training and calibration is radar-specific. To address these challenges, we present a novel data processing pipeline for hand gesture recognition that combines advanced full-wave electromagnetic modelling and inversion with machine learning. In particular, the physical model accounts for the radar source, radar antennas, radar-target interactions and target itself, i.e.,, the hand in our case. To make this processing feasible, the hand is emulated by an equivalent infinite planar reflector, for which analytical Green’s functions exist. The apparent dielectric permittivity, which depends on the hand size, electric properties, and orientation, determines the wave reflection amplitude based on the distance from the hand to the radar. Through full-wave inversion of the radar data, the physical distance as well as this apparent permittivity are retrieved, thereby reducing by several orders of magnitude the dimension of the radar dataset, while keeping the essential information. Finally, the estimated distance and apparent permittivity as a function of gesture time are used to train the machine learning algorithm for gesture recognition. This physically-based dimension reduction enables the use of simple gesture recognition algorithms, such as template-matching recognizers, that can be trained in real time and provide competitive accuracy with only a few samples. We evaluate significant stages of our pipeline on a dataset of 16 gesture classes, with 5 templates per class, recorded with the Walabot, a lightweight, off-the-shelf array radar. We also compare these results with an ultra wideband radar made of a single horn antenna and lightweight vector network analyzer, and a Leap Motion Controller." @default.
- W4220782259 created "2022-04-03" @default.
- W4220782259 creator A5002970970 @default.
- W4220782259 creator A5015455700 @default.
- W4220782259 creator A5043868402 @default.
- W4220782259 date "2022-03-22" @default.
- W4220782259 modified "2023-09-28" @default.
- W4220782259 title "Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeling and Inversion" @default.
- W4220782259 cites W1965863284 @default.
- W4220782259 cites W1996802381 @default.
- W4220782259 cites W2031554729 @default.
- W4220782259 cites W2044874154 @default.
- W4220782259 cites W2070584460 @default.
- W4220782259 cites W2128496122 @default.
- W4220782259 cites W2128820094 @default.
- W4220782259 cites W2129127678 @default.
- W4220782259 cites W2142783231 @default.
- W4220782259 cites W2144535965 @default.
- W4220782259 cites W2157096766 @default.
- W4220782259 cites W2161304134 @default.
- W4220782259 cites W2469690627 @default.
- W4220782259 cites W2511561981 @default.
- W4220782259 cites W2536305597 @default.
- W4220782259 cites W2537024443 @default.
- W4220782259 cites W2754889825 @default.
- W4220782259 cites W2778508313 @default.
- W4220782259 cites W2796146971 @default.
- W4220782259 cites W2801964127 @default.
- W4220782259 cites W2807258267 @default.
- W4220782259 cites W2808135883 @default.
- W4220782259 cites W2899287308 @default.
- W4220782259 cites W2906990397 @default.
- W4220782259 cites W2908899527 @default.
- W4220782259 cites W2912088370 @default.
- W4220782259 cites W2922148914 @default.
- W4220782259 cites W2950678157 @default.
- W4220782259 cites W2971144987 @default.
- W4220782259 cites W2974623198 @default.
- W4220782259 cites W3000533668 @default.
- W4220782259 cites W3075394774 @default.
- W4220782259 cites W3146968685 @default.
- W4220782259 cites W3154590394 @default.
- W4220782259 cites W3162968607 @default.
- W4220782259 cites W3195349361 @default.
- W4220782259 cites W3198738227 @default.
- W4220782259 cites W4247381894 @default.
- W4220782259 cites W4255601674 @default.
- W4220782259 cites W2783421817 @default.
- W4220782259 cites W3163381357 @default.
- W4220782259 doi "https://doi.org/10.1145/3490099.3511107" @default.
- W4220782259 hasPublicationYear "2022" @default.
- W4220782259 type Work @default.
- W4220782259 citedByCount "11" @default.
- W4220782259 countsByYear W42207822592022 @default.
- W4220782259 countsByYear W42207822592023 @default.
- W4220782259 crossrefType "proceedings-article" @default.
- W4220782259 hasAuthorship W4220782259A5002970970 @default.
- W4220782259 hasAuthorship W4220782259A5015455700 @default.
- W4220782259 hasAuthorship W4220782259A5043868402 @default.
- W4220782259 hasConcept C10929652 @default.
- W4220782259 hasConcept C121332964 @default.
- W4220782259 hasConcept C154945302 @default.
- W4220782259 hasConcept C159437735 @default.
- W4220782259 hasConcept C207347870 @default.
- W4220782259 hasConcept C24890656 @default.
- W4220782259 hasConcept C31972630 @default.
- W4220782259 hasConcept C41008148 @default.
- W4220782259 hasConcept C554190296 @default.
- W4220782259 hasConcept C76155785 @default.
- W4220782259 hasConceptScore W4220782259C10929652 @default.
- W4220782259 hasConceptScore W4220782259C121332964 @default.
- W4220782259 hasConceptScore W4220782259C154945302 @default.
- W4220782259 hasConceptScore W4220782259C159437735 @default.
- W4220782259 hasConceptScore W4220782259C207347870 @default.
- W4220782259 hasConceptScore W4220782259C24890656 @default.
- W4220782259 hasConceptScore W4220782259C31972630 @default.
- W4220782259 hasConceptScore W4220782259C41008148 @default.
- W4220782259 hasConceptScore W4220782259C554190296 @default.
- W4220782259 hasConceptScore W4220782259C76155785 @default.
- W4220782259 hasLocation W42207822591 @default.
- W4220782259 hasOpenAccess W4220782259 @default.
- W4220782259 hasPrimaryLocation W42207822591 @default.
- W4220782259 hasRelatedWork W1879216333 @default.
- W4220782259 hasRelatedWork W1966086309 @default.
- W4220782259 hasRelatedWork W2057046019 @default.
- W4220782259 hasRelatedWork W2107891793 @default.
- W4220782259 hasRelatedWork W2108667406 @default.
- W4220782259 hasRelatedWork W2112487839 @default.
- W4220782259 hasRelatedWork W2234765641 @default.
- W4220782259 hasRelatedWork W2700326835 @default.
- W4220782259 hasRelatedWork W2980722263 @default.
- W4220782259 hasRelatedWork W3096217294 @default.
- W4220782259 isParatext "false" @default.
- W4220782259 isRetracted "false" @default.
- W4220782259 workType "article" @default.