Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220782789> ?p ?o ?g. }
- W4220782789 endingPage "679" @default.
- W4220782789 startingPage "679" @default.
- W4220782789 abstract "Early warning of plant diseases and pests is critical to ensuring food safety and production for economic crops. Data sources such as the occurrence, frequency, and infection locations are crucial in forecasting plant diseases and pests. However, at present, acquiring such data relies on fixed-point observations or field experiments run by agricultural institutions. Thus, insufficient data and low rates of regional representative are among the major problems affecting the performance of forecasting models. In recent years, the development of mobile internet technology and conveniently accessible multi-source agricultural information bring new ideas to plant diseases’ and pests’ forecasting. This study proposed a forecasting model of Alternaria Leaf Spot (ALS) disease in apple that is based on mobile internet disease survey data and high resolution spatial-temporal meteorological data. Firstly, a mobile internet-based questionnaire was designed to collect disease survey data efficiently. A specific data clean procedure was proposed to mitigate the noise in the data. Next, a sensitivity analysis was performed on the temperature and humidity data, to identify disease-sensitive meteorological factors as model inputs. Finally, the disease forecasting model of the apple ALS was established using four machine learning algorithms: Logistic regression(LR); Fisher linear discriminant analysis(FLDA); Support vector machine(SVM); and K-Nearest Neighbors (KNN). The KNN algorithm is recommended in this study, which produced an overall accuracy of 88%, and Kappa of 0.53. This paper shows that through mobile internet disease survey and a proper data clean approach, it is possible to collect necessary data for disease forecasting in a short time. With the aid of high resolution spatial-temporal meteorological data and machine learning approaches, it is able to achieve disease forecast at a regional scale, which will facilitate efficient disease prevention practices." @default.
- W4220782789 created "2022-04-03" @default.
- W4220782789 creator A5019634976 @default.
- W4220782789 creator A5020713851 @default.
- W4220782789 creator A5046287902 @default.
- W4220782789 creator A5051676620 @default.
- W4220782789 creator A5069930488 @default.
- W4220782789 creator A5070651286 @default.
- W4220782789 creator A5072732141 @default.
- W4220782789 date "2022-03-11" @default.
- W4220782789 modified "2023-09-30" @default.
- W4220782789 title "Forecasting Alternaria Leaf Spot in Apple with Spatial-Temporal Meteorological and Mobile Internet-Based Disease Survey Data" @default.
- W4220782789 cites W1977514223 @default.
- W4220782789 cites W1977838479 @default.
- W4220782789 cites W1997577814 @default.
- W4220782789 cites W2004147962 @default.
- W4220782789 cites W2013624101 @default.
- W4220782789 cites W2015200436 @default.
- W4220782789 cites W2017381048 @default.
- W4220782789 cites W2067502478 @default.
- W4220782789 cites W2067957242 @default.
- W4220782789 cites W2085793179 @default.
- W4220782789 cites W2094577360 @default.
- W4220782789 cites W2139212933 @default.
- W4220782789 cites W2163599682 @default.
- W4220782789 cites W2168164420 @default.
- W4220782789 cites W2183659962 @default.
- W4220782789 cites W218515012 @default.
- W4220782789 cites W2339201270 @default.
- W4220782789 cites W2406139372 @default.
- W4220782789 cites W2517304922 @default.
- W4220782789 cites W2567123262 @default.
- W4220782789 cites W2694924746 @default.
- W4220782789 cites W2793056357 @default.
- W4220782789 cites W2811102836 @default.
- W4220782789 cites W2892264623 @default.
- W4220782789 cites W2899054817 @default.
- W4220782789 cites W2899463152 @default.
- W4220782789 cites W3043684671 @default.
- W4220782789 cites W3094273493 @default.
- W4220782789 cites W3112284995 @default.
- W4220782789 cites W3118359403 @default.
- W4220782789 cites W3133047415 @default.
- W4220782789 cites W3159437456 @default.
- W4220782789 cites W3165159700 @default.
- W4220782789 cites W3187511678 @default.
- W4220782789 cites W3208814954 @default.
- W4220782789 cites W4200563989 @default.
- W4220782789 cites W4207021741 @default.
- W4220782789 cites W4242214031 @default.
- W4220782789 doi "https://doi.org/10.3390/agronomy12030679" @default.
- W4220782789 hasPublicationYear "2022" @default.
- W4220782789 type Work @default.
- W4220782789 citedByCount "4" @default.
- W4220782789 countsByYear W42207827892022 @default.
- W4220782789 countsByYear W42207827892023 @default.
- W4220782789 crossrefType "journal-article" @default.
- W4220782789 hasAuthorship W4220782789A5019634976 @default.
- W4220782789 hasAuthorship W4220782789A5020713851 @default.
- W4220782789 hasAuthorship W4220782789A5046287902 @default.
- W4220782789 hasAuthorship W4220782789A5051676620 @default.
- W4220782789 hasAuthorship W4220782789A5069930488 @default.
- W4220782789 hasAuthorship W4220782789A5070651286 @default.
- W4220782789 hasAuthorship W4220782789A5072732141 @default.
- W4220782789 hasBestOaLocation W42207827891 @default.
- W4220782789 hasConcept C110875604 @default.
- W4220782789 hasConcept C119857082 @default.
- W4220782789 hasConcept C12267149 @default.
- W4220782789 hasConcept C124101348 @default.
- W4220782789 hasConcept C136764020 @default.
- W4220782789 hasConcept C150903083 @default.
- W4220782789 hasConcept C154945302 @default.
- W4220782789 hasConcept C2777421447 @default.
- W4220782789 hasConcept C3019235130 @default.
- W4220782789 hasConcept C41008148 @default.
- W4220782789 hasConcept C69738355 @default.
- W4220782789 hasConcept C76155785 @default.
- W4220782789 hasConcept C86803240 @default.
- W4220782789 hasConceptScore W4220782789C110875604 @default.
- W4220782789 hasConceptScore W4220782789C119857082 @default.
- W4220782789 hasConceptScore W4220782789C12267149 @default.
- W4220782789 hasConceptScore W4220782789C124101348 @default.
- W4220782789 hasConceptScore W4220782789C136764020 @default.
- W4220782789 hasConceptScore W4220782789C150903083 @default.
- W4220782789 hasConceptScore W4220782789C154945302 @default.
- W4220782789 hasConceptScore W4220782789C2777421447 @default.
- W4220782789 hasConceptScore W4220782789C3019235130 @default.
- W4220782789 hasConceptScore W4220782789C41008148 @default.
- W4220782789 hasConceptScore W4220782789C69738355 @default.
- W4220782789 hasConceptScore W4220782789C76155785 @default.
- W4220782789 hasConceptScore W4220782789C86803240 @default.
- W4220782789 hasFunder F4320321001 @default.
- W4220782789 hasFunder F4320335777 @default.
- W4220782789 hasIssue "3" @default.
- W4220782789 hasLocation W42207827891 @default.
- W4220782789 hasOpenAccess W4220782789 @default.
- W4220782789 hasPrimaryLocation W42207827891 @default.
- W4220782789 hasRelatedWork W1996541855 @default.