Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220783431> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4220783431 endingPage "1247" @default.
- W4220783431 startingPage "1243" @default.
- W4220783431 abstract "With the rapid emergence of advanced technologies for wireless communications, automatic modulation classification (AMC) has been deployed in the physical layer to blindly identify the modulation fashion of an incoming signal at the receiver and consequently improve the efficiency of spectrum utilization and management. Although recent works on AMC have adopted deep learning with convolutional neural networks (CNNs) to deal with large-confusing signal data, they have shown to be vulnerable to channel deterioration by primitive architectures. In this letter, we design a high-performance CNN architecture, namely Residual-attention Convolutional Network (RanNet), that mainly involves multiple advanced processing blocks to learn intrinsic features of combined waveform data (including in-phase, quadrature, amplitude, and phase components). Each block incorporates attention connection and skip connection in a sophisticated-designed structure to strengthen relevant features and weaken irrelevant features while preventing the network from vanishing gradient. Simulation results on the RadioML 2018.01A dataset show that RanNet is robust to different channel impairments and outperforms state-of-the-art deep networks in terms of accuracy while having a reasonable complexity." @default.
- W4220783431 created "2022-04-03" @default.
- W4220783431 creator A5019789320 @default.
- W4220783431 creator A5021007706 @default.
- W4220783431 creator A5021191255 @default.
- W4220783431 creator A5059877507 @default.
- W4220783431 creator A5062525719 @default.
- W4220783431 creator A5085593383 @default.
- W4220783431 date "2022-06-01" @default.
- W4220783431 modified "2023-09-30" @default.
- W4220783431 title "RanNet: Learning Residual-Attention Structure in CNNs for Automatic Modulation Classification" @default.
- W4220783431 cites W2194775991 @default.
- W4220783431 cites W2773170971 @default.
- W4220783431 cites W2790162610 @default.
- W4220783431 cites W2892154397 @default.
- W4220783431 cites W2916238263 @default.
- W4220783431 cites W2963420686 @default.
- W4220783431 cites W3000943722 @default.
- W4220783431 cites W3008364176 @default.
- W4220783431 cites W3085631338 @default.
- W4220783431 cites W3113059984 @default.
- W4220783431 cites W3128367445 @default.
- W4220783431 cites W3172195905 @default.
- W4220783431 cites W3207406191 @default.
- W4220783431 doi "https://doi.org/10.1109/lwc.2022.3162422" @default.
- W4220783431 hasPublicationYear "2022" @default.
- W4220783431 type Work @default.
- W4220783431 citedByCount "10" @default.
- W4220783431 countsByYear W42207834312022 @default.
- W4220783431 countsByYear W42207834312023 @default.
- W4220783431 crossrefType "journal-article" @default.
- W4220783431 hasAuthorship W4220783431A5019789320 @default.
- W4220783431 hasAuthorship W4220783431A5021007706 @default.
- W4220783431 hasAuthorship W4220783431A5021191255 @default.
- W4220783431 hasAuthorship W4220783431A5059877507 @default.
- W4220783431 hasAuthorship W4220783431A5062525719 @default.
- W4220783431 hasAuthorship W4220783431A5085593383 @default.
- W4220783431 hasConcept C107038049 @default.
- W4220783431 hasConcept C108583219 @default.
- W4220783431 hasConcept C11413529 @default.
- W4220783431 hasConcept C119857082 @default.
- W4220783431 hasConcept C123079801 @default.
- W4220783431 hasConcept C138885662 @default.
- W4220783431 hasConcept C153180895 @default.
- W4220783431 hasConcept C154945302 @default.
- W4220783431 hasConcept C155512373 @default.
- W4220783431 hasConcept C2524010 @default.
- W4220783431 hasConcept C2777210771 @default.
- W4220783431 hasConcept C33923547 @default.
- W4220783431 hasConcept C41008148 @default.
- W4220783431 hasConcept C555944384 @default.
- W4220783431 hasConcept C76155785 @default.
- W4220783431 hasConcept C81363708 @default.
- W4220783431 hasConceptScore W4220783431C107038049 @default.
- W4220783431 hasConceptScore W4220783431C108583219 @default.
- W4220783431 hasConceptScore W4220783431C11413529 @default.
- W4220783431 hasConceptScore W4220783431C119857082 @default.
- W4220783431 hasConceptScore W4220783431C123079801 @default.
- W4220783431 hasConceptScore W4220783431C138885662 @default.
- W4220783431 hasConceptScore W4220783431C153180895 @default.
- W4220783431 hasConceptScore W4220783431C154945302 @default.
- W4220783431 hasConceptScore W4220783431C155512373 @default.
- W4220783431 hasConceptScore W4220783431C2524010 @default.
- W4220783431 hasConceptScore W4220783431C2777210771 @default.
- W4220783431 hasConceptScore W4220783431C33923547 @default.
- W4220783431 hasConceptScore W4220783431C41008148 @default.
- W4220783431 hasConceptScore W4220783431C555944384 @default.
- W4220783431 hasConceptScore W4220783431C76155785 @default.
- W4220783431 hasConceptScore W4220783431C81363708 @default.
- W4220783431 hasFunder F4320322120 @default.
- W4220783431 hasIssue "6" @default.
- W4220783431 hasLocation W42207834311 @default.
- W4220783431 hasOpenAccess W4220783431 @default.
- W4220783431 hasPrimaryLocation W42207834311 @default.
- W4220783431 hasRelatedWork W2337926734 @default.
- W4220783431 hasRelatedWork W2732542196 @default.
- W4220783431 hasRelatedWork W2738221750 @default.
- W4220783431 hasRelatedWork W2963958939 @default.
- W4220783431 hasRelatedWork W3207322857 @default.
- W4220783431 hasRelatedWork W4311257506 @default.
- W4220783431 hasRelatedWork W4319994054 @default.
- W4220783431 hasRelatedWork W4320802194 @default.
- W4220783431 hasRelatedWork W4366224123 @default.
- W4220783431 hasRelatedWork W564581980 @default.
- W4220783431 hasVolume "11" @default.
- W4220783431 isParatext "false" @default.
- W4220783431 isRetracted "false" @default.
- W4220783431 workType "article" @default.