Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220783445> ?p ?o ?g. }
- W4220783445 endingPage "104057" @default.
- W4220783445 startingPage "104057" @default.
- W4220783445 abstract "A new, phenomenological, model of disturbance waves in annular two-phase flow is presented. The model builds upon the three-field (gas, drops and film) one-dimensional model of annular two-phase flow by considering the disturbance waves as an additional fluid field, traveling over a thin liquid base film, along with its own mass, momentum and energy conservation equations. The waves are modeled as fluid particles characterized by basic macroscopic parameters such as the wave shape factor (amplitude/width) and the wave number density (spatial frequency of waves). Phase change is considered and relevant closure models are developed for the field mass and momentum exchange rates (drop entrainment/deposition and waves/base film interactions). A Boltzmann transport equation of wave number density is introduced to model the hydrodynamic non-equilibrium effects related to the wave creation, merging and splitting processes, characteristic of developing annular two-phase flows (due to e.g., inlet effect, phase change, geometrical change or transient). Finally, the base film mass and wave number density sink and source rates are modeled using a relaxation time approximation. The new model is motivated and fully documented in this paper and has been implemented in the latest version of the transient sub-channel analysis code MEFISTO-T. While the proposed model framework is generic for coherent disturbance waves, the required wave characteristic correlations are specifically developed and calibrated using high pressure steam/water experiments under equilibrium conditions relevant of Boiling Water Reactor operation. The model relaxation times are then estimated by comparing the model predictions against measured wave parameters downstream various flow perturbations (evaporation and film suction), along the channel recovery length toward equilibrium. For all considered experiments, the model predicts the averaged wave and base film parameters typically within +/-20% and is able to capture the axial development of disturbance wave characteristics. The consideration of non-equilibrium effects is found fundamental to the accurate simulation of axially developing annular two-phase flows." @default.
- W4220783445 created "2022-04-03" @default.
- W4220783445 creator A5066477527 @default.
- W4220783445 date "2022-06-01" @default.
- W4220783445 modified "2023-09-29" @default.
- W4220783445 title "Phenomenological model of disturbance waves in annular two-phase flow" @default.
- W4220783445 cites W1164548857 @default.
- W4220783445 cites W1203741232 @default.
- W4220783445 cites W1963594058 @default.
- W4220783445 cites W1964702221 @default.
- W4220783445 cites W1973734214 @default.
- W4220783445 cites W1976845841 @default.
- W4220783445 cites W1978601532 @default.
- W4220783445 cites W1985003045 @default.
- W4220783445 cites W1998256994 @default.
- W4220783445 cites W2003322059 @default.
- W4220783445 cites W2004882870 @default.
- W4220783445 cites W2005518669 @default.
- W4220783445 cites W2009041567 @default.
- W4220783445 cites W2011497954 @default.
- W4220783445 cites W2012068281 @default.
- W4220783445 cites W2013141349 @default.
- W4220783445 cites W2029612389 @default.
- W4220783445 cites W2032546646 @default.
- W4220783445 cites W2033899423 @default.
- W4220783445 cites W2035181127 @default.
- W4220783445 cites W2035583654 @default.
- W4220783445 cites W2036503893 @default.
- W4220783445 cites W2037918793 @default.
- W4220783445 cites W2045340177 @default.
- W4220783445 cites W2045638448 @default.
- W4220783445 cites W2049618865 @default.
- W4220783445 cites W2055170549 @default.
- W4220783445 cites W2062074031 @default.
- W4220783445 cites W2063055703 @default.
- W4220783445 cites W2064691033 @default.
- W4220783445 cites W2065814336 @default.
- W4220783445 cites W2067376166 @default.
- W4220783445 cites W2067908119 @default.
- W4220783445 cites W2078206077 @default.
- W4220783445 cites W2078963175 @default.
- W4220783445 cites W2087900038 @default.
- W4220783445 cites W2093405662 @default.
- W4220783445 cites W2094438341 @default.
- W4220783445 cites W2133537545 @default.
- W4220783445 cites W2153492345 @default.
- W4220783445 cites W2359970326 @default.
- W4220783445 cites W2533905520 @default.
- W4220783445 cites W2551881083 @default.
- W4220783445 cites W2595253744 @default.
- W4220783445 cites W2767090031 @default.
- W4220783445 cites W2792328960 @default.
- W4220783445 cites W2800934000 @default.
- W4220783445 cites W2805420368 @default.
- W4220783445 cites W2921216910 @default.
- W4220783445 cites W2943922748 @default.
- W4220783445 cites W2973607192 @default.
- W4220783445 cites W2980974561 @default.
- W4220783445 cites W3045965946 @default.
- W4220783445 cites W3080809357 @default.
- W4220783445 cites W3131217848 @default.
- W4220783445 cites W3135768836 @default.
- W4220783445 cites W3167683991 @default.
- W4220783445 cites W391952020 @default.
- W4220783445 cites W4211056035 @default.
- W4220783445 cites W4254396477 @default.
- W4220783445 cites W802216589 @default.
- W4220783445 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2022.104057" @default.
- W4220783445 hasPublicationYear "2022" @default.
- W4220783445 type Work @default.
- W4220783445 citedByCount "1" @default.
- W4220783445 countsByYear W42207834452022 @default.
- W4220783445 crossrefType "journal-article" @default.
- W4220783445 hasAuthorship W4220783445A5066477527 @default.
- W4220783445 hasConcept C120665830 @default.
- W4220783445 hasConcept C121332964 @default.
- W4220783445 hasConcept C144308804 @default.
- W4220783445 hasConcept C2780247500 @default.
- W4220783445 hasConcept C38349280 @default.
- W4220783445 hasConcept C44886760 @default.
- W4220783445 hasConcept C57879066 @default.
- W4220783445 hasConceptScore W4220783445C120665830 @default.
- W4220783445 hasConceptScore W4220783445C121332964 @default.
- W4220783445 hasConceptScore W4220783445C144308804 @default.
- W4220783445 hasConceptScore W4220783445C2780247500 @default.
- W4220783445 hasConceptScore W4220783445C38349280 @default.
- W4220783445 hasConceptScore W4220783445C44886760 @default.
- W4220783445 hasConceptScore W4220783445C57879066 @default.
- W4220783445 hasLocation W42207834451 @default.
- W4220783445 hasOpenAccess W4220783445 @default.
- W4220783445 hasPrimaryLocation W42207834451 @default.
- W4220783445 hasRelatedWork W1975751430 @default.
- W4220783445 hasRelatedWork W1996423350 @default.
- W4220783445 hasRelatedWork W2071703340 @default.
- W4220783445 hasRelatedWork W2088505168 @default.
- W4220783445 hasRelatedWork W2313573148 @default.
- W4220783445 hasRelatedWork W2334797851 @default.
- W4220783445 hasRelatedWork W2743977629 @default.