Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784480> ?p ?o ?g. }
- W4220784480 endingPage "e35016" @default.
- W4220784480 startingPage "e35016" @default.
- W4220784480 abstract "The development and approval of COVID-19 vaccines have generated optimism for the end of the COVID-19 pandemic and a return to normalcy. However, vaccine hesitancy, often fueled by misinformation, poses a major barrier to achieving herd immunity.We aim to investigate Twitter users' attitudes toward COVID-19 vaccination in Canada after vaccine rollout.We applied a weakly supervised aspect-based sentiment analysis (ABSA) technique, which involves the human-in-the-loop system, on COVID-19 vaccination-related tweets in Canada. Automatically generated aspect and opinion terms were manually corrected by public health experts to ensure the accuracy of the terms and make them more domain-specific. Then, based on these manually corrected terms, the system inferred sentiments toward the aspects. We observed sentiments toward key aspects related to COVID-19 vaccination, and investigated how sentiments toward vaccination changed over time. In addition, we analyzed the most retweeted or liked tweets by observing most frequent nouns and sentiments toward key aspects.After applying the ABSA system, we obtained 170 aspect terms (eg, immunity and pfizer) and 6775 opinion terms (eg, trustworthy for the positive sentiment and jeopardize for the negative sentiment). While manually verifying or editing these terms, our public health experts selected 20 key aspects related to COVID-19 vaccination for analysis. The sentiment analysis results for the 20 key aspects revealed negative sentiments related to vaccine distribution, side effects, allergy, reactions, and anti-vaxxer, and positive sentiments related to vaccine campaign, vaccine candidates, and immune response. These results indicate that the Twitter users express concerns about the safety of vaccines but still consider vaccines as the option to end the pandemic. In addition, compared to the sentiment of the remaining tweets, the most retweeted or liked tweets showed more positive sentiment overall toward key aspects (P<.001), especially vaccines (P<.001) and vaccination (P=.009). Further investigation of the most retweeted or liked tweets revealed two opposing trends in Twitter users who showed negative sentiments toward vaccines: the anti-vaxxer population that used negative sentiments as a means to discourage vaccination and the Covid Zero population that used negative sentiments to encourage vaccinations while critiquing the public health response.Our study examined public sentiments toward COVID-19 vaccination on tweets over an extended period in Canada. Our findings could inform public health agencies to design and implement interventions to promote vaccination." @default.
- W4220784480 created "2022-04-03" @default.
- W4220784480 creator A5000896624 @default.
- W4220784480 creator A5004110506 @default.
- W4220784480 creator A5030634575 @default.
- W4220784480 creator A5046714396 @default.
- W4220784480 creator A5049259877 @default.
- W4220784480 creator A5056044026 @default.
- W4220784480 date "2022-03-29" @default.
- W4220784480 modified "2023-09-30" @default.
- W4220784480 title "Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis" @default.
- W4220784480 cites W2157258619 @default.
- W4220784480 cites W2970569171 @default.
- W4220784480 cites W3037557962 @default.
- W4220784480 cites W3045045932 @default.
- W4220784480 cites W3082439375 @default.
- W4220784480 cites W3096058949 @default.
- W4220784480 cites W3103145424 @default.
- W4220784480 cites W3111048826 @default.
- W4220784480 cites W3127105153 @default.
- W4220784480 cites W3128392043 @default.
- W4220784480 cites W3128585438 @default.
- W4220784480 cites W3128864568 @default.
- W4220784480 cites W3132264034 @default.
- W4220784480 cites W3132354137 @default.
- W4220784480 cites W3136973443 @default.
- W4220784480 cites W3153731940 @default.
- W4220784480 cites W3154586727 @default.
- W4220784480 cites W3154757366 @default.
- W4220784480 cites W3167569123 @default.
- W4220784480 cites W3171261489 @default.
- W4220784480 cites W3172707223 @default.
- W4220784480 cites W3182978015 @default.
- W4220784480 doi "https://doi.org/10.2196/35016" @default.
- W4220784480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35275835" @default.
- W4220784480 hasPublicationYear "2022" @default.
- W4220784480 type Work @default.
- W4220784480 citedByCount "14" @default.
- W4220784480 countsByYear W42207844802022 @default.
- W4220784480 countsByYear W42207844802023 @default.
- W4220784480 crossrefType "journal-article" @default.
- W4220784480 hasAuthorship W4220784480A5000896624 @default.
- W4220784480 hasAuthorship W4220784480A5004110506 @default.
- W4220784480 hasAuthorship W4220784480A5030634575 @default.
- W4220784480 hasAuthorship W4220784480A5046714396 @default.
- W4220784480 hasAuthorship W4220784480A5049259877 @default.
- W4220784480 hasAuthorship W4220784480A5056044026 @default.
- W4220784480 hasBestOaLocation W42207844801 @default.
- W4220784480 hasConcept C106192422 @default.
- W4220784480 hasConcept C134698397 @default.
- W4220784480 hasConcept C138816342 @default.
- W4220784480 hasConcept C142724271 @default.
- W4220784480 hasConcept C154945302 @default.
- W4220784480 hasConcept C15744967 @default.
- W4220784480 hasConcept C159047783 @default.
- W4220784480 hasConcept C159110408 @default.
- W4220784480 hasConcept C17744445 @default.
- W4220784480 hasConcept C19417346 @default.
- W4220784480 hasConcept C199539241 @default.
- W4220784480 hasConcept C22070199 @default.
- W4220784480 hasConcept C26517878 @default.
- W4220784480 hasConcept C2775936607 @default.
- W4220784480 hasConcept C2776990098 @default.
- W4220784480 hasConcept C2779134260 @default.
- W4220784480 hasConcept C3008058167 @default.
- W4220784480 hasConcept C38652104 @default.
- W4220784480 hasConcept C41008148 @default.
- W4220784480 hasConcept C524204448 @default.
- W4220784480 hasConcept C66402592 @default.
- W4220784480 hasConcept C71924100 @default.
- W4220784480 hasConcept C94625758 @default.
- W4220784480 hasConceptScore W4220784480C106192422 @default.
- W4220784480 hasConceptScore W4220784480C134698397 @default.
- W4220784480 hasConceptScore W4220784480C138816342 @default.
- W4220784480 hasConceptScore W4220784480C142724271 @default.
- W4220784480 hasConceptScore W4220784480C154945302 @default.
- W4220784480 hasConceptScore W4220784480C15744967 @default.
- W4220784480 hasConceptScore W4220784480C159047783 @default.
- W4220784480 hasConceptScore W4220784480C159110408 @default.
- W4220784480 hasConceptScore W4220784480C17744445 @default.
- W4220784480 hasConceptScore W4220784480C19417346 @default.
- W4220784480 hasConceptScore W4220784480C199539241 @default.
- W4220784480 hasConceptScore W4220784480C22070199 @default.
- W4220784480 hasConceptScore W4220784480C26517878 @default.
- W4220784480 hasConceptScore W4220784480C2775936607 @default.
- W4220784480 hasConceptScore W4220784480C2776990098 @default.
- W4220784480 hasConceptScore W4220784480C2779134260 @default.
- W4220784480 hasConceptScore W4220784480C3008058167 @default.
- W4220784480 hasConceptScore W4220784480C38652104 @default.
- W4220784480 hasConceptScore W4220784480C41008148 @default.
- W4220784480 hasConceptScore W4220784480C524204448 @default.
- W4220784480 hasConceptScore W4220784480C66402592 @default.
- W4220784480 hasConceptScore W4220784480C71924100 @default.
- W4220784480 hasConceptScore W4220784480C94625758 @default.
- W4220784480 hasIssue "3" @default.
- W4220784480 hasLocation W42207844801 @default.
- W4220784480 hasLocation W42207844802 @default.
- W4220784480 hasLocation W42207844803 @default.