Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784493> ?p ?o ?g. }
- W4220784493 endingPage "116881" @default.
- W4220784493 startingPage "116881" @default.
- W4220784493 abstract "In machine learning, nearest neighbor (NN) regression is one of the most prominent methods for numeric prediction. It estimates the output variable of a new data point by averaging the output variables of the neighboring points. The selection of the neighborhood and its parameter(s) is crucial for the performance of NN regression, however this is still an open issue. This study contributes to the literature by adopting the parameter-free surrounding neighborhood (PSN) concept for NN regression. PSNs are based on proximity graphs, i.e. minimum spanning tree, relative neighborhood graph, and Gabriel graph. They yield a unique neighborhood for each point by combining proximity, connectivity and spatial distribution. The performances of the PSN regression methods are compared with k-nearest neighbors, k-nearest centroid neighbors, and support vector regression using real-world data sets. The statistical tests show that the PSN regression methods perform significantly better than most of the competing approaches. Also, the proposed approaches do not have any parameters to be set." @default.
- W4220784493 created "2022-04-03" @default.
- W4220784493 creator A5052661657 @default.
- W4220784493 date "2022-08-01" @default.
- W4220784493 modified "2023-09-27" @default.
- W4220784493 title "Parameter-free surrounding neighborhood based regression methods" @default.
- W4220784493 cites W1091928747 @default.
- W4220784493 cites W1965680834 @default.
- W4220784493 cites W1965754471 @default.
- W4220784493 cites W1970754929 @default.
- W4220784493 cites W1998803278 @default.
- W4220784493 cites W2015190966 @default.
- W4220784493 cites W2016944307 @default.
- W4220784493 cites W2031671531 @default.
- W4220784493 cites W2042608585 @default.
- W4220784493 cites W2063295648 @default.
- W4220784493 cites W2077020139 @default.
- W4220784493 cites W2087627575 @default.
- W4220784493 cites W2095306443 @default.
- W4220784493 cites W2155566653 @default.
- W4220784493 cites W2157536451 @default.
- W4220784493 cites W2163227453 @default.
- W4220784493 cites W2168185444 @default.
- W4220784493 cites W2175433587 @default.
- W4220784493 cites W2198775596 @default.
- W4220784493 cites W2491991542 @default.
- W4220784493 cites W2522684508 @default.
- W4220784493 cites W2588248442 @default.
- W4220784493 cites W2593740144 @default.
- W4220784493 cites W2593842564 @default.
- W4220784493 cites W2607281691 @default.
- W4220784493 cites W2614182302 @default.
- W4220784493 cites W2620846946 @default.
- W4220784493 cites W2794885692 @default.
- W4220784493 cites W2794933040 @default.
- W4220784493 cites W2798162266 @default.
- W4220784493 cites W2886793380 @default.
- W4220784493 cites W2889960222 @default.
- W4220784493 cites W2920938851 @default.
- W4220784493 cites W2920964209 @default.
- W4220784493 cites W2942147001 @default.
- W4220784493 cites W2990959288 @default.
- W4220784493 cites W3004361679 @default.
- W4220784493 cites W3037026157 @default.
- W4220784493 cites W3086947797 @default.
- W4220784493 cites W3093598320 @default.
- W4220784493 cites W3098785845 @default.
- W4220784493 cites W3103117761 @default.
- W4220784493 cites W3156922078 @default.
- W4220784493 cites W3195040583 @default.
- W4220784493 cites W4241727697 @default.
- W4220784493 doi "https://doi.org/10.1016/j.eswa.2022.116881" @default.
- W4220784493 hasPublicationYear "2022" @default.
- W4220784493 type Work @default.
- W4220784493 citedByCount "2" @default.
- W4220784493 countsByYear W42207844932023 @default.
- W4220784493 crossrefType "journal-article" @default.
- W4220784493 hasAuthorship W4220784493A5052661657 @default.
- W4220784493 hasConcept C105795698 @default.
- W4220784493 hasConcept C113238511 @default.
- W4220784493 hasConcept C119857082 @default.
- W4220784493 hasConcept C120068334 @default.
- W4220784493 hasConcept C12267149 @default.
- W4220784493 hasConcept C132525143 @default.
- W4220784493 hasConcept C146599234 @default.
- W4220784493 hasConcept C152877465 @default.
- W4220784493 hasConcept C154945302 @default.
- W4220784493 hasConcept C33923547 @default.
- W4220784493 hasConcept C41008148 @default.
- W4220784493 hasConcept C60316415 @default.
- W4220784493 hasConcept C80444323 @default.
- W4220784493 hasConcept C83546350 @default.
- W4220784493 hasConceptScore W4220784493C105795698 @default.
- W4220784493 hasConceptScore W4220784493C113238511 @default.
- W4220784493 hasConceptScore W4220784493C119857082 @default.
- W4220784493 hasConceptScore W4220784493C120068334 @default.
- W4220784493 hasConceptScore W4220784493C12267149 @default.
- W4220784493 hasConceptScore W4220784493C132525143 @default.
- W4220784493 hasConceptScore W4220784493C146599234 @default.
- W4220784493 hasConceptScore W4220784493C152877465 @default.
- W4220784493 hasConceptScore W4220784493C154945302 @default.
- W4220784493 hasConceptScore W4220784493C33923547 @default.
- W4220784493 hasConceptScore W4220784493C41008148 @default.
- W4220784493 hasConceptScore W4220784493C60316415 @default.
- W4220784493 hasConceptScore W4220784493C80444323 @default.
- W4220784493 hasConceptScore W4220784493C83546350 @default.
- W4220784493 hasLocation W42207844931 @default.
- W4220784493 hasOpenAccess W4220784493 @default.
- W4220784493 hasPrimaryLocation W42207844931 @default.
- W4220784493 hasRelatedWork W158001369 @default.
- W4220784493 hasRelatedWork W2077461356 @default.
- W4220784493 hasRelatedWork W2124293944 @default.
- W4220784493 hasRelatedWork W2137226992 @default.
- W4220784493 hasRelatedWork W2375721435 @default.
- W4220784493 hasRelatedWork W2948566604 @default.
- W4220784493 hasRelatedWork W3012357114 @default.
- W4220784493 hasRelatedWork W3125023155 @default.
- W4220784493 hasRelatedWork W4254710374 @default.