Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784557> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4220784557 abstract "<p><span>Many satellite images are corrupted by stripping; this noise degrades the visual quality of the images and inevitably introduces errors in processing. Thermal and hyperspectral images often suffer from stripping. The frequency distribution characteristic of stripe noise makes it difficult to remove such noise in the spatial domain; contrariwise, this noise can be efficiently detected in the frequency domain. Numerous solutions have been proposed to eliminate such noise using Fourier transform; however, most are subjective and time-consuming approaches.</span></p><p><span>The lack of a fast and automated tool in this subject has motivated us to introduce a Convolutional Neural Network-based tool that uses the U-Net architecture in the frequency domain to suppress the anomalies caused by stripe noise. We added synthetic noise to satellite images to train the model. Then, we taught the network how to mask these anomalies in the frequency domain. The input image dataset was down-sampled to a size of 128 x128 pixels for a fast training time. However, our results suggest that the output mask can be up-scaled and applied on the original Fourier transform of the image and still achieve satisfying results; this means that the proposed algorithm is applicable on images regardless of their size. </span></p><p><span>After the training step, the U-Net architecture can confidently find the anomalies and create an acceptable bounding mask; the results show that - with enough training data- the proposed procedure can efficiently remove stripe noise from all sorts of images. At this stage, we are trying to further develop the model to detect and suppress more complex synthetic noise. Next, we will focus on removing real stripe noise on satellite images to present a robust tool.</span></p>" @default.
- W4220784557 created "2022-04-03" @default.
- W4220784557 creator A5061008375 @default.
- W4220784557 creator A5069980642 @default.
- W4220784557 date "2022-03-28" @default.
- W4220784557 modified "2023-10-16" @default.
- W4220784557 title "Removing Stripe Noise from Satellite Images using Convolutional Neural Networks in Frequency Domain" @default.
- W4220784557 doi "https://doi.org/10.5194/egusphere-egu22-12575" @default.
- W4220784557 hasPublicationYear "2022" @default.
- W4220784557 type Work @default.
- W4220784557 citedByCount "0" @default.
- W4220784557 crossrefType "posted-content" @default.
- W4220784557 hasAuthorship W4220784557A5061008375 @default.
- W4220784557 hasAuthorship W4220784557A5069980642 @default.
- W4220784557 hasConcept C102519508 @default.
- W4220784557 hasConcept C11413529 @default.
- W4220784557 hasConcept C115961682 @default.
- W4220784557 hasConcept C127413603 @default.
- W4220784557 hasConcept C134306372 @default.
- W4220784557 hasConcept C147176958 @default.
- W4220784557 hasConcept C153180895 @default.
- W4220784557 hasConcept C154945302 @default.
- W4220784557 hasConcept C160633673 @default.
- W4220784557 hasConcept C19118579 @default.
- W4220784557 hasConcept C203024314 @default.
- W4220784557 hasConcept C2778753569 @default.
- W4220784557 hasConcept C28490314 @default.
- W4220784557 hasConcept C31972630 @default.
- W4220784557 hasConcept C33923547 @default.
- W4220784557 hasConcept C36503486 @default.
- W4220784557 hasConcept C41008148 @default.
- W4220784557 hasConcept C57733114 @default.
- W4220784557 hasConcept C76563020 @default.
- W4220784557 hasConcept C81363708 @default.
- W4220784557 hasConcept C99498987 @default.
- W4220784557 hasConceptScore W4220784557C102519508 @default.
- W4220784557 hasConceptScore W4220784557C11413529 @default.
- W4220784557 hasConceptScore W4220784557C115961682 @default.
- W4220784557 hasConceptScore W4220784557C127413603 @default.
- W4220784557 hasConceptScore W4220784557C134306372 @default.
- W4220784557 hasConceptScore W4220784557C147176958 @default.
- W4220784557 hasConceptScore W4220784557C153180895 @default.
- W4220784557 hasConceptScore W4220784557C154945302 @default.
- W4220784557 hasConceptScore W4220784557C160633673 @default.
- W4220784557 hasConceptScore W4220784557C19118579 @default.
- W4220784557 hasConceptScore W4220784557C203024314 @default.
- W4220784557 hasConceptScore W4220784557C2778753569 @default.
- W4220784557 hasConceptScore W4220784557C28490314 @default.
- W4220784557 hasConceptScore W4220784557C31972630 @default.
- W4220784557 hasConceptScore W4220784557C33923547 @default.
- W4220784557 hasConceptScore W4220784557C36503486 @default.
- W4220784557 hasConceptScore W4220784557C41008148 @default.
- W4220784557 hasConceptScore W4220784557C57733114 @default.
- W4220784557 hasConceptScore W4220784557C76563020 @default.
- W4220784557 hasConceptScore W4220784557C81363708 @default.
- W4220784557 hasConceptScore W4220784557C99498987 @default.
- W4220784557 hasLocation W42207845571 @default.
- W4220784557 hasOpenAccess W4220784557 @default.
- W4220784557 hasPrimaryLocation W42207845571 @default.
- W4220784557 hasRelatedWork W1571893903 @default.
- W4220784557 hasRelatedWork W2041383376 @default.
- W4220784557 hasRelatedWork W2136485282 @default.
- W4220784557 hasRelatedWork W2175746458 @default.
- W4220784557 hasRelatedWork W2401457058 @default.
- W4220784557 hasRelatedWork W2513218295 @default.
- W4220784557 hasRelatedWork W2546871836 @default.
- W4220784557 hasRelatedWork W2732542196 @default.
- W4220784557 hasRelatedWork W2760085659 @default.
- W4220784557 hasRelatedWork W3093612317 @default.
- W4220784557 isParatext "false" @default.
- W4220784557 isRetracted "false" @default.
- W4220784557 workType "article" @default.