Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784773> ?p ?o ?g. }
- W4220784773 endingPage "100370" @default.
- W4220784773 startingPage "100370" @default.
- W4220784773 abstract "In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have increased over the past decade, with a 7.2-fold increase in 2018 compared to 2017, and a markedly expanded geographic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-long (2010-2019) data at high spatial resolution.We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contribution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively.Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water availability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018 outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest predictors, in addition to past climatic trends.Our AI-based framework can be deployed to trigger rapid and timely alerts for active surveillance and vector control measures in order to intercept an imminent WNV-outbreak in Europe.The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT (grant agreement 2018-05973)." @default.
- W4220784773 created "2022-04-03" @default.
- W4220784773 creator A5003877515 @default.
- W4220784773 creator A5022230602 @default.
- W4220784773 creator A5054112077 @default.
- W4220784773 creator A5076354356 @default.
- W4220784773 creator A5079332608 @default.
- W4220784773 creator A5089771957 @default.
- W4220784773 creator A5090027021 @default.
- W4220784773 date "2022-06-01" @default.
- W4220784773 modified "2023-10-18" @default.
- W4220784773 title "Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers" @default.
- W4220784773 cites W1669000738 @default.
- W4220784773 cites W1741335280 @default.
- W4220784773 cites W1987179763 @default.
- W4220784773 cites W1993925927 @default.
- W4220784773 cites W2006169033 @default.
- W4220784773 cites W2013852605 @default.
- W4220784773 cites W2021266265 @default.
- W4220784773 cites W2021921065 @default.
- W4220784773 cites W2027051223 @default.
- W4220784773 cites W2027558165 @default.
- W4220784773 cites W2059254211 @default.
- W4220784773 cites W2060741694 @default.
- W4220784773 cites W2061488183 @default.
- W4220784773 cites W2072214469 @default.
- W4220784773 cites W2077657151 @default.
- W4220784773 cites W2078908002 @default.
- W4220784773 cites W2080852373 @default.
- W4220784773 cites W2082525978 @default.
- W4220784773 cites W2083553775 @default.
- W4220784773 cites W2084926821 @default.
- W4220784773 cites W2085318578 @default.
- W4220784773 cites W2094036596 @default.
- W4220784773 cites W2109504587 @default.
- W4220784773 cites W2114879374 @default.
- W4220784773 cites W2116594326 @default.
- W4220784773 cites W2122682427 @default.
- W4220784773 cites W2135256153 @default.
- W4220784773 cites W2137450422 @default.
- W4220784773 cites W2170087944 @default.
- W4220784773 cites W2174439173 @default.
- W4220784773 cites W2180507660 @default.
- W4220784773 cites W2296598059 @default.
- W4220784773 cites W2342038853 @default.
- W4220784773 cites W2342282097 @default.
- W4220784773 cites W2405153718 @default.
- W4220784773 cites W2468768517 @default.
- W4220784773 cites W2619756992 @default.
- W4220784773 cites W2709477677 @default.
- W4220784773 cites W2730653994 @default.
- W4220784773 cites W2762715417 @default.
- W4220784773 cites W2765256800 @default.
- W4220784773 cites W2787567270 @default.
- W4220784773 cites W2805840391 @default.
- W4220784773 cites W2897887602 @default.
- W4220784773 cites W2905159617 @default.
- W4220784773 cites W2943202308 @default.
- W4220784773 cites W2953121811 @default.
- W4220784773 cites W2961201202 @default.
- W4220784773 cites W2963096148 @default.
- W4220784773 cites W2966410313 @default.
- W4220784773 cites W2968211639 @default.
- W4220784773 cites W2975931003 @default.
- W4220784773 cites W2996869251 @default.
- W4220784773 cites W2999218207 @default.
- W4220784773 cites W2999615587 @default.
- W4220784773 cites W3006676056 @default.
- W4220784773 cites W3017050129 @default.
- W4220784773 cites W3022398404 @default.
- W4220784773 cites W3026226103 @default.
- W4220784773 cites W3036332717 @default.
- W4220784773 cites W3043403256 @default.
- W4220784773 cites W3084581047 @default.
- W4220784773 cites W3087479834 @default.
- W4220784773 cites W3102339436 @default.
- W4220784773 cites W3119880809 @default.
- W4220784773 cites W3124590480 @default.
- W4220784773 cites W3162232424 @default.
- W4220784773 cites W3196540226 @default.
- W4220784773 cites W3201666266 @default.
- W4220784773 cites W3205755569 @default.
- W4220784773 cites W4229548039 @default.
- W4220784773 cites W58859750 @default.
- W4220784773 doi "https://doi.org/10.1016/j.lanepe.2022.100370" @default.
- W4220784773 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35373173" @default.
- W4220784773 hasPublicationYear "2022" @default.
- W4220784773 type Work @default.
- W4220784773 citedByCount "13" @default.
- W4220784773 countsByYear W42207847732022 @default.
- W4220784773 countsByYear W42207847732023 @default.
- W4220784773 crossrefType "journal-article" @default.
- W4220784773 hasAuthorship W4220784773A5003877515 @default.
- W4220784773 hasAuthorship W4220784773A5022230602 @default.
- W4220784773 hasAuthorship W4220784773A5054112077 @default.
- W4220784773 hasAuthorship W4220784773A5076354356 @default.
- W4220784773 hasAuthorship W4220784773A5079332608 @default.
- W4220784773 hasAuthorship W4220784773A5089771957 @default.