Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784800> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4220784800 endingPage "103664" @default.
- W4220784800 startingPage "103664" @default.
- W4220784800 abstract "Electroencephalography (EEG) as a biometric modality has gained considerable interest in recent years. Many state-of-the-art methods have focused on increasing the recognition accuracy. However, the more complex and manipulative the methods become, the less practical and generalized they are in real-life applications. In this study, we prioritized computational efficiency and evaluated the model performance. In this direction, we propose the mean curve length (MCL), a simple measure quantifying signal complexity, which is analytically and empirically related to the Katz fractal dimension. By merely being the average of the absolute value of the first-order difference of a signal, MCL is arguably the most computationally efficient feature that can be extracted from an EEG signal. In this paper, we utilized it for person identification and authentication on a large standard dataset comprising 109 subjects under the eyes-open (EO) and eyes-closed (EC) resting state conditions. We employed a Mahalanobis distance-based classifier both for identification and authentication tasks. Our results indicate that in addition to its simplicity and low computational cost, MCL provides a remarkably high individual distinction as well. Specifically, recognition accuracies were 99.4% (EO) and 98.8% (EC) for identification, and for authentication, equal error percentages of 6.33% (EO) and 10.50% (EC) were obtained. Our study offers a fast and accurate neural biometric recognition scheme promising especially for practical real-world and real-time applications. It further proves the effectiveness of nonlinear signal measures in individual discrimination, and promotes shifting the focus beyond the conventional brain oscillatory and connectivity measures commonly fostered in EEG-based biometrics literature." @default.
- W4220784800 created "2022-04-03" @default.
- W4220784800 creator A5006651720 @default.
- W4220784800 creator A5040692560 @default.
- W4220784800 date "2022-07-01" @default.
- W4220784800 modified "2023-09-25" @default.
- W4220784800 title "Mean curve length: An efficient feature for brainwave biometrics" @default.
- W4220784800 cites W1571460927 @default.
- W4220784800 cites W1592861455 @default.
- W4220784800 cites W1986197724 @default.
- W4220784800 cites W1989155160 @default.
- W4220784800 cites W1994233698 @default.
- W4220784800 cites W1996183177 @default.
- W4220784800 cites W1996687698 @default.
- W4220784800 cites W2020743612 @default.
- W4220784800 cites W2022437153 @default.
- W4220784800 cites W2072062726 @default.
- W4220784800 cites W2078204079 @default.
- W4220784800 cites W2107461080 @default.
- W4220784800 cites W2117638598 @default.
- W4220784800 cites W2140959843 @default.
- W4220784800 cites W2156770021 @default.
- W4220784800 cites W2162800060 @default.
- W4220784800 cites W2188333210 @default.
- W4220784800 cites W2477033421 @default.
- W4220784800 cites W2558686573 @default.
- W4220784800 cites W2606276143 @default.
- W4220784800 cites W2612085556 @default.
- W4220784800 cites W2626079605 @default.
- W4220784800 cites W2757934307 @default.
- W4220784800 cites W2791392305 @default.
- W4220784800 cites W2794008059 @default.
- W4220784800 cites W2907610496 @default.
- W4220784800 cites W2909650627 @default.
- W4220784800 cites W2911312349 @default.
- W4220784800 cites W2916700883 @default.
- W4220784800 cites W2946344027 @default.
- W4220784800 cites W2956072276 @default.
- W4220784800 cites W3015468458 @default.
- W4220784800 cites W3019900571 @default.
- W4220784800 cites W3032871533 @default.
- W4220784800 cites W3035471470 @default.
- W4220784800 cites W3083815377 @default.
- W4220784800 cites W3093995294 @default.
- W4220784800 cites W3100751967 @default.
- W4220784800 cites W3110151578 @default.
- W4220784800 cites W3117109898 @default.
- W4220784800 cites W3150220312 @default.
- W4220784800 cites W3180581806 @default.
- W4220784800 cites W3185192541 @default.
- W4220784800 cites W3202391304 @default.
- W4220784800 doi "https://doi.org/10.1016/j.bspc.2022.103664" @default.
- W4220784800 hasPublicationYear "2022" @default.
- W4220784800 type Work @default.
- W4220784800 citedByCount "0" @default.
- W4220784800 crossrefType "journal-article" @default.
- W4220784800 hasAuthorship W4220784800A5006651720 @default.
- W4220784800 hasAuthorship W4220784800A5040692560 @default.
- W4220784800 hasConcept C138885662 @default.
- W4220784800 hasConcept C153180895 @default.
- W4220784800 hasConcept C154945302 @default.
- W4220784800 hasConcept C184297639 @default.
- W4220784800 hasConcept C1921717 @default.
- W4220784800 hasConcept C2776401178 @default.
- W4220784800 hasConcept C28490314 @default.
- W4220784800 hasConcept C40969351 @default.
- W4220784800 hasConcept C41008148 @default.
- W4220784800 hasConcept C41895202 @default.
- W4220784800 hasConcept C95623464 @default.
- W4220784800 hasConceptScore W4220784800C138885662 @default.
- W4220784800 hasConceptScore W4220784800C153180895 @default.
- W4220784800 hasConceptScore W4220784800C154945302 @default.
- W4220784800 hasConceptScore W4220784800C184297639 @default.
- W4220784800 hasConceptScore W4220784800C1921717 @default.
- W4220784800 hasConceptScore W4220784800C2776401178 @default.
- W4220784800 hasConceptScore W4220784800C28490314 @default.
- W4220784800 hasConceptScore W4220784800C40969351 @default.
- W4220784800 hasConceptScore W4220784800C41008148 @default.
- W4220784800 hasConceptScore W4220784800C41895202 @default.
- W4220784800 hasConceptScore W4220784800C95623464 @default.
- W4220784800 hasLocation W42207848001 @default.
- W4220784800 hasOpenAccess W4220784800 @default.
- W4220784800 hasPrimaryLocation W42207848001 @default.
- W4220784800 hasRelatedWork W1581329577 @default.
- W4220784800 hasRelatedWork W2001652754 @default.
- W4220784800 hasRelatedWork W2040095072 @default.
- W4220784800 hasRelatedWork W2356621584 @default.
- W4220784800 hasRelatedWork W2384093694 @default.
- W4220784800 hasRelatedWork W2549006548 @default.
- W4220784800 hasRelatedWork W3044078048 @default.
- W4220784800 hasRelatedWork W4214932115 @default.
- W4220784800 hasRelatedWork W4246585671 @default.
- W4220784800 hasRelatedWork W2185710410 @default.
- W4220784800 hasVolume "76" @default.
- W4220784800 isParatext "false" @default.
- W4220784800 isRetracted "false" @default.
- W4220784800 workType "article" @default.