Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784838> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4220784838 endingPage "336" @default.
- W4220784838 startingPage "326" @default.
- W4220784838 abstract "Artificial intelligence is a robust state-of-art method for image-based mapping and classification. We presented a machine learning–based working architecture that trains its model and test to classify land cover focused toward crop field using open Sentinel-2A image data. The machine learning–based methods generally follow traditional supervised training methods and create a decision tree, weighted relation with independent inputs, and dependent outcomes. The Random forest (RF) machine learning using training samples for various land cover classes to access the statistical information to build its decision tree to derive the classes. It creates a complex decision tree of larger decision depth in comparison to other basic decision trees rule-based classification. So it manages to create decision trees between a large number of classes; however, as the number of classes is increased, time is taken to train the RF model also increases substantially. The time-series Sentinel-2A of post-monsoon Rabi crop season of the year 2019 and 2020 pre-possessed to create Soil adjusted Vegetation Index (SAVI) product followed by principal component analysis (PCA) to create the independent, nonredundant image. The independent data used for training the RF model and further classification testing. The RF machine learning model is trained using classes vectors on principal components (PCs) and for classification testing to test on PCs image to get the land cover and crop-mapped classified image. The accuracy of the classified image is tested using stratified random sampling method, and the overall accuracy is above 85% and kappa statistics is 0.78. The RF is proven for the classification of the number of classes using its complex decision-making methods with higher accuracy." @default.
- W4220784838 created "2022-04-03" @default.
- W4220784838 creator A5006491569 @default.
- W4220784838 creator A5008807729 @default.
- W4220784838 creator A5052189299 @default.
- W4220784838 creator A5063102916 @default.
- W4220784838 creator A5083768904 @default.
- W4220784838 date "2022-03-04" @default.
- W4220784838 modified "2023-09-25" @default.
- W4220784838 title "Artificial Machine Learning–Based Classification of Land Cover and Crop Types Using Sentinel‐2A Imagery" @default.
- W4220784838 cites W1796572857 @default.
- W4220784838 cites W1964217023 @default.
- W4220784838 cites W1983668540 @default.
- W4220784838 cites W1985082033 @default.
- W4220784838 cites W1995058857 @default.
- W4220784838 cites W2007397897 @default.
- W4220784838 cites W2030163399 @default.
- W4220784838 cites W2046294536 @default.
- W4220784838 cites W2068394350 @default.
- W4220784838 cites W2099507093 @default.
- W4220784838 cites W2111027908 @default.
- W4220784838 cites W2139086914 @default.
- W4220784838 cites W2142827986 @default.
- W4220784838 cites W2166486067 @default.
- W4220784838 cites W2604086375 @default.
- W4220784838 cites W2767953525 @default.
- W4220784838 cites W2901235829 @default.
- W4220784838 cites W3001353259 @default.
- W4220784838 cites W3012013667 @default.
- W4220784838 cites W3020878652 @default.
- W4220784838 cites W3091945164 @default.
- W4220784838 cites W3111704055 @default.
- W4220784838 cites W4251571877 @default.
- W4220784838 doi "https://doi.org/10.1002/9781119808565.ch16" @default.
- W4220784838 hasPublicationYear "2022" @default.
- W4220784838 type Work @default.
- W4220784838 citedByCount "0" @default.
- W4220784838 crossrefType "other" @default.
- W4220784838 hasAuthorship W4220784838A5006491569 @default.
- W4220784838 hasAuthorship W4220784838A5008807729 @default.
- W4220784838 hasAuthorship W4220784838A5052189299 @default.
- W4220784838 hasAuthorship W4220784838A5063102916 @default.
- W4220784838 hasAuthorship W4220784838A5083768904 @default.
- W4220784838 hasConcept C115961682 @default.
- W4220784838 hasConcept C119857082 @default.
- W4220784838 hasConcept C124101348 @default.
- W4220784838 hasConcept C127413603 @default.
- W4220784838 hasConcept C147176958 @default.
- W4220784838 hasConcept C153180895 @default.
- W4220784838 hasConcept C154945302 @default.
- W4220784838 hasConcept C169258074 @default.
- W4220784838 hasConcept C2780648208 @default.
- W4220784838 hasConcept C41008148 @default.
- W4220784838 hasConcept C4792198 @default.
- W4220784838 hasConcept C5481197 @default.
- W4220784838 hasConcept C75294576 @default.
- W4220784838 hasConcept C84525736 @default.
- W4220784838 hasConceptScore W4220784838C115961682 @default.
- W4220784838 hasConceptScore W4220784838C119857082 @default.
- W4220784838 hasConceptScore W4220784838C124101348 @default.
- W4220784838 hasConceptScore W4220784838C127413603 @default.
- W4220784838 hasConceptScore W4220784838C147176958 @default.
- W4220784838 hasConceptScore W4220784838C153180895 @default.
- W4220784838 hasConceptScore W4220784838C154945302 @default.
- W4220784838 hasConceptScore W4220784838C169258074 @default.
- W4220784838 hasConceptScore W4220784838C2780648208 @default.
- W4220784838 hasConceptScore W4220784838C41008148 @default.
- W4220784838 hasConceptScore W4220784838C4792198 @default.
- W4220784838 hasConceptScore W4220784838C5481197 @default.
- W4220784838 hasConceptScore W4220784838C75294576 @default.
- W4220784838 hasConceptScore W4220784838C84525736 @default.
- W4220784838 hasLocation W42207848381 @default.
- W4220784838 hasOpenAccess W4220784838 @default.
- W4220784838 hasPrimaryLocation W42207848381 @default.
- W4220784838 hasRelatedWork W2964383635 @default.
- W4220784838 hasRelatedWork W3033979565 @default.
- W4220784838 hasRelatedWork W3036095178 @default.
- W4220784838 hasRelatedWork W3134840015 @default.
- W4220784838 hasRelatedWork W3211635560 @default.
- W4220784838 hasRelatedWork W3214630042 @default.
- W4220784838 hasRelatedWork W4239706975 @default.
- W4220784838 hasRelatedWork W4280583453 @default.
- W4220784838 hasRelatedWork W4308191010 @default.
- W4220784838 hasRelatedWork W4318350883 @default.
- W4220784838 isParatext "false" @default.
- W4220784838 isRetracted "false" @default.
- W4220784838 workType "other" @default.